Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T06:01:12.298Z Has data issue: false hasContentIssue false

Fabrication of silicon nanowire based solar cells using TiO2/Al2O3 stack thin films

Published online by Cambridge University Press:  11 January 2018

Yasuyoshi Kurokawa*
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi-shi, Saitama, 332-0012, Japan
Ryota Nezasa
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
Shinya Kato
Affiliation:
Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
Hisashi Miyazaki
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka-shi, Kanagawa 239-8686, Japan
Isao Takahashi
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
Noritaka Usami
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
*
Get access

Abstract

To improve conversion efficiency of silicon nanowire (SiNW) solar cells, it is very important to reduce the surface recombination rate on the surface of SiNWs, since SiNWs have a large surface area. We tried to cover SiNWs with aluminum oxide (Al2O3) and titanium oxide (TiO2) by atomic layer deposition (ALD), since Al2O3 grown by ALD provides an excellent level of surface passivation on silicon wafers and TiO2 has a higher refractive index than Al2O3, leading to the reduction of surface reflectance. The effective minority carrier lifetime in SiNW arrays embedded in a TiO2/Al2O3 stack layer of 94 μsec was obtained, which was comparable to an Al2O3 single layer. The surface reflectance of SiNW solar cells was drastically decreased below around 5% in all of the wavelength range using the Al2O3/TiO2/Al2O3 stack layer. Heterojunction SiNW solar cells with the structure of ITO/p-type hydrogenated amorphous silicon (a-Si:H)/n-type SiNWs embedded in Al2O3 and TiO2 stack layer for passivation/n-type a-Si:H/back electrode was fabricated, and a typical rectifying property and open-circuit voltage of 356 mV were successfully obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., Appl. Phys. Lett. 91, 233117 (2007).Google Scholar
Fang, H., Li, X., Song, S., Xu, Y., and Zhu, J., Nanotechnology 19, 255703 (2008).Google Scholar
Gunawan, O. and Guha, S., Sol. Energy Mater Sol. Cells 93, 1388 (2009).Google Scholar
Sivakov, V., Andrä, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Lett. 9, 1549 (2009).Google Scholar
Krogstrup, P., Jorgensen, H. I., Heiss, M., Demichel, O., Holm, J. V., Aagesen, M., Nygard, J., and Fontcuberta, A. Morral, i, Nat. Photon 7, 306 (2013).Google Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F., Nat. Nano 9, 19 (2014).Google Scholar
Kanematsu, D., Yata, S., Terakawa, A., Tanaka, M., and Konagai, M., Jpn. J. Appl. Phys. 54, 08KA09 (2015).Google Scholar
Kayes, B. M., Atwater, H. A., and Lewis, N. S., J. Appl. Phys. 97, 114302 (2005).Google Scholar
Peng, K., Wang, X., and Lee, S.-T., Appl. Phys. Lett. 92, 163103 (2008).Google Scholar
Cho, J., O’Donnell, B., Yu, L., Kim, K.-H., Ngo, I., and Cabarrocas, P. R. i., Prog. Photovoltaics 21, 77 (2013).Google Scholar
Jeon, M. and Kamisako, K., Mater. Lett. 63, 777 (2009).Google Scholar
Jiang, Y., Qin, R., Li, M., Wang, G., Ma, H., and Chang, F., Materials Science in Semiconductor Processing 17, 81 (2014).Google Scholar
Ko, M.-D., Rim, T., Kim, K., Meyyappan, M., and Baek, C.-K., Sci. Rep. 5, 11646 (2015).Google Scholar
Hu, L. and Chen, G., Nano Lett. 7, 3249 (2007).Google Scholar
Lin, C. and Povinelli, M. L., Opt. Express 17, 19371 (2009).Google Scholar
Kim, S.-K., Day, R. W., Cahoon, J. F., Kempa, T. J., Song, K.-D., Park, H.-G., and Lieber, C. M., Nano Lett. 12, 4971 (2012).Google Scholar
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Nanoscale Res. Lett. 8, 216 (2013).Google Scholar
Ishikawa, R., Kato, S., Yamazaki, T., Kurokawa, Y., Miyajima, S., and Konagai, M., Jpn. J. Appl. Phys. 53, 02BE09 (2014).CrossRefGoogle Scholar
Savin, H., Repo, P., von Gastrow, G., Ortega, P., Calle, E., Garín, M., and Alcubilla, R., Nat. Nano 10, 624 (2015).Google Scholar
Li, Y., Li, M., Fu, P., Li, R., Song, D., Shen, C., and Zhao, Y., Sci. Rep. 5, 11532 (2015).Google Scholar
Garnett, E. and Yang, P., Nano Lett. 10, 1082 (2010).Google Scholar
Zhu, J., Yu, Z., Burkhard, G. F., Hsu, C.-M., Connor, S. T., Xu, Y., Wang, Q., McGehee, M., Fan, S., and Cui, Y., Nano Lett. 9, 279 (2008).Google Scholar
Kato, S., Kurokawa, Y., Miyajima, S., Watanabe, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Nanoscale Res. Lett. 8, 361 (2013).Google Scholar
Kato, S., Yamazaki, T., Kurokawa, Y., Miyajima, S., and Konagai, M., Nanoscale Res. Lett. 12, 242 (2017).Google Scholar
Kurokawa, Y., Yano, M., Miyajima, S., and Yamada, A., Jpn. J. Appl. Phys. 56, 04CS03 (2017).Google Scholar
Yamada, Y., Kurokawa, Y., Kato, S., and Yamada, A., Tech. Dig. the 23rd International Photovoltaic Science and Engineering Conference, (Taiwan, 2013) p. 1249.Google Scholar
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn. J. Appl. Phys. 51, 02BP09 (2012).Google Scholar
Li, X. and Bohn, P. W., Appl. Phys. Lett. 77, 2572 (2000).CrossRefGoogle Scholar
Chen, X., Liu, L., Yu, P. Y., and Mao, S. S., Science 331, 746 (2011).Google Scholar
Komatsu, R., Balčytis, A., Seniutinas, G., Yamamura, T., Nishijima, Y., and Juodkazis, S., Sol. Energy Mater Sol. Cells 143, 72 (2015).Google Scholar
Mie, G., Annalen der Physik 330, 377 (1908).Google Scholar