Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T06:02:42.216Z Has data issue: false hasContentIssue false

Fabrication and performance test of biodegradable supercapacitor

Published online by Cambridge University Press:  03 June 2019

Hu Li*
Affiliation:
Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing100083, China. E-mail: [email protected] CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, China.
Yubo Fan
Affiliation:
Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing100083, China. E-mail: [email protected]
Zhou Li*
Affiliation:
CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, China. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, China. E-mail: [email protected]
*
Get access

Abstract

Power source plays an important role in keeping normal functions of biodegradable electronic devices. In this paper, we proposed a fabrication method of biodegradable supercapacitor (BSC), which can provide energy for portable and implantable medical electronics. The BSC has a sandwich-like symmetric structure, which was assembled layer by layer. The electrochemical performances of BSC were measured, including the cyclic voltammetry test, galvanostatic charge-discharge and electrochemical impedance spectroscopy. Titanium foil was used as a template to generate microstructure for polylactic acid (PLA) supporting substrate. The microstructure provided strong adhesion force for iron film in sputtering process. The nanoporous zinc oxide layer was prepared by evaporation-driven self-assembly technology on iron film. The nanoporous structure was in favour of ionic storage in charging-discharging process. About 60% of capacitance retention was achieved after 3000 times of cycling test. After connecting three BSC in series, a green LED pattern was lighted up immediately, indicating that the energy was stored in BSC device successfully. After immersing the BSC in DMEM, the BSC can be totally degraded gradually. This work provided a feasible scheme for developing biodegradable energy storage device, it also gave a possible avenue for powering biodegradable electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, F., Li, M. J., Siffalovic, P., Cao, G. Z., and Tian, J. J.. Energy Environ. Sci. 12, 518 (2019).CrossRefGoogle Scholar
Wang, J. H., Wang, H., Thakor, N. V., and Lee, C.. ACS Nano 13, 3589 (2019).CrossRefGoogle Scholar
Xie, J. P., Zhu, Y. Q., Zhuang, N., Lei, H., Zhu, W. L., Fu, Y., Javed, M. S., Li, J. L., and Mai, W. J.. Nanoscale 10, 17092 (2018).CrossRefGoogle Scholar
Irimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S., and Sariciftci, N. S., Mater. Today 15. 340 (2012).CrossRefGoogle Scholar
Hwang, S. -W., Tao, H., Kim, D. -H., Cheng, H., Song, J. -K., Rill, E., Brenckle, M. A., Panilaitis, B., Won, S. M., Kim, Y. -S., Song, Y. M., Yu, K. J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D. L., Zakin, M. R., Slepian, M. J., Huang, Y., Omenetto, F. G., and Rogers, J. A.. Science 337, 1640 (2012).CrossRefGoogle Scholar
Li, H., Zhao, C. C., Meng, J. P., Wang, X. X., Zou, Y., Noreen, S., Zhao, L. M., Liu, Z., Ouyang, H., Tan, P. C., Yu, M., Fan, Y. B., Wang, Z. L., and Li, Z.. Adv. Sci. 6, 1801625 (2019).CrossRefGoogle Scholar
Jiang, W., Li, H., Liu, Z., Li, Z., Tian, J. J., Shi, B. J., Zou, Y., Ouyang, H., Zhao, C. C., Zhao, L. M., Sun, R., Zheng, H. R., Fan, Y. B., Wang, Z. L., and Li, Z.. Adv. Mater. 30, 1801895 (2018).CrossRefGoogle Scholar
Li, Z., Feng, H. Q., Zheng, Q., Li, H., Zhao, C. C., Ouyang, H., Noreen, S., Yu, M., Su, F., Liu, R. P., Li, L. L., Wang, Z. L., and Li, Z.. Nano Energy 54, 390 (2018).CrossRefGoogle Scholar
Boutry, C. M., Nguyen, A., Lawal, Q. O., Chortos, A., Rondeau-Gagnéand, S., and Bao, Z.. Adv. Mater. 27, 6954 (2015).CrossRefGoogle Scholar
Jung, Y. H., Chang, T. -H., Zhang, H. L., Yao, C. H., Zheng, Q. F., Yang, V. W., Mi, H. Y., Kim, M., Cho, S. J., Park, D. -W., Jiang, H., Lee, J., Qiu, Y. J., Zhou, W. D., Cai, Z. Y., Gong, S. Q., and Ma, Z. Q.. Nat. Commun. 6, 7170 (2015).CrossRefGoogle Scholar
Li, H., Geng, H. -Z., Meng, Y., Wang, Y., Xu, X.-B., Ding, E. -X., Gao, J., Chen, L. -T., and Ma, S.. Appl. Surf. Sci. 313, 220 (2014).CrossRefGoogle Scholar
Bettinger, C. J., and Bao, Z.. Adv. Mater. 22, 651 (2010).CrossRefGoogle Scholar
Bortolettl, M., Rodella, C., Salvador, R., Miranda, P. C., and Miniussi, C., Brain Stimul. 9, 525 (2016).CrossRefGoogle Scholar
Li, H., Wang, X. X., Jiang, W., Fu, H. Y., Liang, X. Q., Zhang, K., Li, Z., Zhao, C. C., Feng, H. Q., Nie, J., Liu, R. P., Zhou, G., Fan, Y. B., and Li, Z.. Adv. Mater. Interfaces 5, 1701648 (2018).CrossRefGoogle Scholar
Li, H., Ouyang, H., Yu, M., Wu, N., Wang, X. X., Jiang, W., Liu, Z., Tian, J. J., Jin, Y. M., Feng, H. Q., Fan, Y. B., and Li, Z.. Small 13, 1603642 (2017).CrossRefGoogle ScholarPubMed
Wang, C., Hu, K., Li, W. J., Wang, H. Y., Li, H., Zou, Y., Zhao, C. C., Li, Z., Yu, M., Tan, P. C., and Li, Z.. ACS Appl. Mater. Interfaces 10, 34302 (2018).CrossRefGoogle ScholarPubMed
Zhang, L. L., and Zhao, X. S.. Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
Zhang, C. F., Higgins, T. M., Park, S. H., O’Brien, S. E., Long, D. H., Coleman, J. N., and Nicolosi, V.. Nano Energy 28, 495 (2016).CrossRefGoogle Scholar
Jang, G. G., Song, B., Li, L. Y., Keum, J. K., Jiang, Y. D., Hunt, A., Moon, K. S., Wong, C. P., and Hu, M. Z.. Nano Energy 32, 88 (2017).CrossRefGoogle Scholar
Portet, C., Taberna, P. L., Simon, P., and Laberty-Robert, C.. Electrochim. Acta 49, 905 (2004).CrossRefGoogle Scholar