Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:45:19.220Z Has data issue: false hasContentIssue false

Density Functional Theory Study on Energy Band Gap of Armchair Silicene Nanoribbons with Periodic Nanoholes

Published online by Cambridge University Press:  11 February 2016

Sadegh Mehdi Aghaei*
Affiliation:
QUEST Lab, Department of Electrical and Computer Engineering, Florida International University, Miami, Fl 33172, U.S.A.
Irene Calizo
Affiliation:
QUEST Lab, Department of Electrical and Computer Engineering, Florida International University, Miami, Fl 33172, U.S.A. Department of Mechanical and Materials Engineering, Florida International University, Miami, Fl 33172, U.S.A.
*
Get access

Abstract

In this study, density functional theory (DFT) is employed to investigate the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs). The dangling bonds of armchair silicene nanoribbons (ASiNR) are passivated by mono- (:H) or di-hydrogen (:2H) atoms. Our results show that the ASiNRs can be categorized into three groups based on their width: W = 3P − 1, 3P, and 3P + 1, P is an integer. The band gap value order changes from “EG (3P − 1) < EG (3P) < EG (3P + 1)” to “EG (3P + 1) < EG (3P − 1) < EG (3P)” when edge hydrogenation varies from mono- to di-hydrogenated. The energy band gap values for ASiNRPNHs depend on the nanoribbons width and the repeat periodicity of the nanoholes. The band gap value of ASiNRPNHs is larger than that of pristine ASiNRs when repeat periodicity is even, while it is smaller than that of pristine ASiNRs when repeat periodicity is odd. In general, the value of energy band gap for ASiNRPNHs:2H is larger than that of ASiNRPNHs:H. So a band gap as large as 0.92 eV is achievable with ASiNRPNHs of width 12 and repeat periodicity of 2. Furthermore, creating periodic nanoholes near the edge of the nanoribbons cause a larger band gap due to a strong quantum confinement effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., and Firsov, A., Science 306, 666669 (2004).Google Scholar
Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., and Firsov, A., Nature 438, 197200 (2005).Google Scholar
Kara, A., Enriquez, H., Seitsonen, A., Lew Yan Voon, L. C., Vizzini, S., and Oughaddou, H., Surf. Sci. Rep., 67, 118 (2012)Google Scholar
Guzmán -Verri, G. G. and Voon, L. L. Y., Phys. Rev. B 76, 075131 (2007).Google Scholar
Takeda, K. and Shiraishi, K., Phys. Rev. B 50, 14916 (1994).Google Scholar
Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., and Le Lay, G., Phys. Rev. Lett. 108, 155501 (2012).Google Scholar
Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., and Wu, K., Nano Lett. 12, 35073511 (2012).Google Scholar
Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W. A. et al. ., Nano Lett. 13, 685690 (2013).CrossRefGoogle Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Yamada-Takamura, Y., Phys. Rev. Lett. 108, 245501 (2012).Google Scholar
Aizawa, T., Suehara, S., and Otani, S., J. Phys. Chem. C 118, 2304923057 (2014).Google Scholar
Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., and Akinwande, D., Nat. Nanotechnol. 10, 227231 (2015).Google Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).Google Scholar
Drummond, N., Zolyomi, V., and Fal’Ko, V., Phys. Rev. B 85, 075423 (2012).Google Scholar
Lew Yan Voon, L., Sandberg, E., Aga, R., and Farajian, A., Appl. Phys. Lett. 97, 163114 (2010).Google Scholar
Zhu, J. and Schwingenschlögl, U., ACS Appl. Mater. Interfaces 6, 1167511681 (2014).Google Scholar
Pan, F., Wang, Y., Jiang, K., Ni, Z., Ma, J., Zheng, J., Quhe, R., Shi, J., Yang, J., Chen, C. et al. ., Sci. Rep. 5, 9075 (2015).Google Scholar
Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., and Le Lay, G., Appl. Phys. Lett. 96, 183102 (2010).Google Scholar
De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P. M., Moras, P., Carbone, C., Topwal, D., Olivieri, B., Kara, A., Oughaddou, H., Aufray, B., Le Lay, G., et al. ., Appl. Phys. Lett. 96, 261905 (2010).Google Scholar
De Padova, P., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., and Le Lay, G., Nano Lett. 12, 55005503 (2012).CrossRefGoogle Scholar
Tchalala, M. R., Enriquez, H., Mayne, A. J., Kara, A., Roth, S., Silly, M. G., Bendounan, A., Sirotti, F., Greber, T., Aufray, B. et al. ., Appl. Phys. Lett. 102, 083107 (2013).Google Scholar
Topsakal, M., Aktürk, E., Sevinc¸li, H., and Ciraci, S., Phys. Rev. B 78, 235435 (2008).CrossRefGoogle Scholar
Aghaei, S. M., Yasrebi, N., and Rashidian, B., J. Nanomater., 2015, Article ID 936876, 7 pages (2015).Google Scholar
De Padova, P., Quaresima, C., Olivieri, B., Perfetti, P., and Le Lay, G., J. Phys. D: Appl. Phys. 44, 312001 (2011).Google Scholar
Li, H.-p. and Zhang, R.-q., Europhys. Lett. 99, 36001 (2012).Google Scholar
Özçelik, V. O., Gurel, H. H., and Ciraci, S., Phys. Rev. B 88, 045440 (2013).CrossRefGoogle Scholar
Berdiyorov, G. and Peeters, F., RSC Adv. 4, 11331137 (2014).Google Scholar
Song, Y.-L., Zhang, Y., Zhang, J.-M., Lu, D.-B., and Xu, K.-W., J. Mol. Struct. 990, 7578 (2011).CrossRefGoogle Scholar
Aghaei, S. M. and Calizo, I., J. App. Phys., 118, 104304 (2015).Google Scholar
An, R.-L., Wang, X.-F., Vasilopoulos, P., Liu, Y.-S., Chen, A.-B., Dong, Y.-J., and Zhai, M.- X., J. Phys. Chem. C 118, 2133921346 (2014).Google Scholar
Aghaei, S. M. and Calizo, I., SoutheastCon 2015, 16 (2015).Google Scholar
Atomistix Toolkit version 2014.1; QuantumWise, Copenhagen, Denmark; Available at http://www.quantumwise.com (accessed at 20 June 2015).Google Scholar
Li, H., Lu, W., Jiaxin, Z., Wai-Ning, M., Zhengziang, G., Junjie, S., and Jing, L., Eur. Phys. J. B 85, 274 (2012).Google Scholar
Zheng, X. H., Huang, L. F., Wang, X. L., Lan, J., and Zeng, Z., Comput. Mater. Sci., 62, 9398 (2012).Google Scholar