Published online by Cambridge University Press: 22 January 2020
This study aims to create controlled fine space by electrospinning, and to develop the electrode materials for high-performance energy devices. With the popularization of mobile devices, household appliances, hybrid vehicles, electric vehicles, and the like, the use of power storage devices is expanding, and further performance improvements are required. In this study, a novel electrode material was developed by compositing Si with carbon nanofibers derived from polyacrylonitrile (PAN) by electrospinning and heat treatment. The texture and structure of the nanofibers were observed and analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and transmission electron microscopy (TEM) combined with image processing. Nano spaces were created in the CNFs and Si particles were able to be contained in the CNFs. In the second and subsequent cycles of the charge/discharge experiments of lithium ion battery (LIB) electrode made from the materials, the capacity was more than twice the theoretical capacity using graphite, and good cycle performance was obtained.