Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T15:12:17.924Z Has data issue: false hasContentIssue false

Synthesis and structure of calumetite-like SrCu4(OH)8Cl2⋅3.5H2O

Published online by Cambridge University Press:  17 September 2021

Wilson A. Crichton*
Affiliation:
ESRF- The European Synchrotron, 71 avenue des Martyrs, 38000Grenoble, France
Harald Müller
Affiliation:
ESRF- The European Synchrotron, 71 avenue des Martyrs, 38000Grenoble, France
Matteo Leoni
Affiliation:
Saudi Aramco R&D Center, PO BOX 62, 31311Dhahran, Saudi Arabia
*
*Author for correspondence: Wilson A. Crichton, Email: [email protected]

Abstract

The synthesis and structure of the title compound, 1, is presented, refined using Rietveld against powder X-ray diffraction data. 1 crystallises dominantly in a pseudotetragonal C-centred orthorhombic lattice with dimensions a = 6.6791(6) Å, b = 15.5006(6) Å, c = 6.6811(6) Å and V = 691.70(10) Å3. The structural model proposed here refined by Rietveld is Sr0.928(8)Cu4(OH)8Cl2⋅3.60(21)H2O in space group Cmcm (63), with Z = 2. The chemistry and diffraction pattern of 1 are similar to that for the known Ca analogue, calumetite. The copper sites are arranged with square planar coordination at ¼ and ¾ height and are bonded to four (protonated) oxygens at an average of 1.966 Å (effective coordination of 3.82 Å). The more distant Cl sites (at Cu−Cl = 3.190(6) Å) complete the heavily Jahn–Teller distorted Cu[(OH)4,Cl2] polyhedra. The ½-occupied Sr sites are 8 coordinated to four protonated oxygens shared with the Cu-layer (at 2 × 2.438(8) Å, 2 × 2.566(15) Å) and by 4 bonds to the proposed water sites (Sr−Ow = 2.760(9) Å). The structure of 1 is predisposed towards defects, based on a notional tetragonal, P4/nmm, substructure with asuba1, csub = b½ dimensions. Average diffraction models have been further elaborated in order to resolve additional peaks (and peak-shapes) using DIFFaX+.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Braithwaite, R.S.W., Mereiter, K., Parr, W.H. and Clark, A.M. (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Crichton, W.A. and Müller, H. (2017) Centennialite, CaCu3(OH)6Cl2.nH2O, n~0.7, a new kapellasite-like species, and a reassessment of calumetite. Mineralogical Magazine, 81, 11051124.CrossRefGoogle Scholar
Dubler, E., Vedani, A. and Oswald, H.R. (1983) New structure determination of murdochite, Cu6PbO8. Acta Crystallographica, C39, 11431146.Google Scholar
Erdös, E., Denzler, E. and Altorfer, H. (1981) Thermochemical, crystallographic and infrared studies on calcium copper hydroxychloride hydrates. Thermochimica Acta, 44, 345361.CrossRefGoogle Scholar
Feitknecht, W. (1949) Über Doppelhydroxyde und basiche Doppelsalze. 7. Über basiche Doppelchloride des Kupfers. Helvetica Chimica Acta, 32, 16531667.CrossRefGoogle Scholar
Fitch, A.N. (2004) The High Resolution Powder Diffraction Beam Line at ESRF. Journal of Research of the National Institute for Standards Technology, 109, 133142.CrossRefGoogle ScholarPubMed
Iida, K., Yoshida, H.K., Nakao, A., Jeschke, H. O., Iqbal, Y., Nakajima, K., Ohira–Kawamura, S., Munakata, K., Inamura, Y., Murai, N., Ishikado, M. Kumai, R., Okada, T., Oda, M., Kakurai, K. and Matsuda, M. (2020) q = 0 long-range magnetic order in centennialite CaCu3(OD)6Cl2⋅0.6D2O: A spin-perfect Kagome antiferromagnet with J 1J 2J d. Physical Review B, 101, 220408(R).CrossRefGoogle Scholar
Jarek, U., Holynska, M., Slepokura, K. and Lis, T. (2007) Calcium chloride rhenate(VII) dihydrate. Acta Crystallographica, C63, i77i79.Google Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M. and Molina Doloso, A.A. (2013) Leverettite from the Torrecillas mine, Salar Grande, Iquique Province, Chile: the co-analogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Krause, W., Bernhardt, H.J., Braithwaite, R.S.W., Kolitsch, U. and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece and its crystal structure. Mineralogical Magazine, 70, 329340.CrossRefGoogle Scholar
Leoni, M., Gualtieri, A.F. and Roveri, N. (2004) Simultaneous refinement of structure and microstructure of layered materials. Journal of Applied Crystallography, 37, 166173.CrossRefGoogle Scholar
Lubej, A., Koloini, T. and Pohar, C. (2004) Industrial precipitation of cupric hydroxyl-salts. Acta Chimica Slovenica, 51, 751768.Google Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6 and the bond-valence parameters of the OH–Cl bond. Acta Crystallographica, B63, 157160.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M. R., Molina Donoso, A., Nestola, F., Rossi, M. and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
McQueen, T.M., Han, T.H., Freedman, D.E., Stephens, P.W., Lee, Y.S. and Nocera, D.G. (2011) CdCu3(OH)6Cl2: A new layered hydroxide chloride. Journal of Solid State Chemistry, 184, 33193323.CrossRefGoogle Scholar
Miyawaki, R. Hatert, F., Pasero, M. and Mills, S.J. (2019) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) NEWSLETTER 49: New minerals and nomenclature modifications approved in 2019. Proposal 18–C. Mineralogical Magazine, 83, 479483.CrossRefGoogle Scholar
Momma, K. and Izzumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nishio-Hamane, D. Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N., Okuma, R., Kampf, A. R. and Minakawa, T. (2017) Iyoite, MnCuCl(OH)3 and misakiite, Cu3Mn(OH)6Cl2: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan. Mineralogical Magazine, 81, 485498.CrossRefGoogle Scholar
Oswald, H. R. and Feitknecht, W. (1964) Über Hydroyhalogenide Me2(OH)3Cl,-Br,-J zweiwertiger Metalle (Me=Mg,Ni,Co,Cu,Fe,Mn). Helvetica Chimica Acta, 47, 272289.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Plantinus, L. (2014) Crystallographic computing system JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Pitschke, W., Krabbes, G. and Mattern, N. (1995) Powder diffraction data and Rietveld refinement of the compound Ba2Cl2Cu3O4. Powder Diffraction, 10, 282287.CrossRefGoogle Scholar
Putz, H., Schoen, J.C. and Jansen, M. (1999) Combined method for “ab initio” structure solution from powder diffraction data. Journal of Applied Crystallography, 32 864870.CrossRefGoogle Scholar
Schlüter, J., Malcherek, T., Pohl, D. and Schäfer, C. (2019) Vondechenite, a new hydrous calcium copper chloride hydroxide, from the Bellerberg, East–Eifel volcanic area, Germany. Neues Jahrbuch Mineralogische Abhandlungen, 195, 7986.CrossRefGoogle Scholar
Sun, W., Huang, Y.X., Pan, Y. and Mi, J.X. (2016) Synthesis and magnetic properties of centennialite: a new S = ½ Kagome antiferromagnet and comparison with herbertsmithite and kapellasite. Physics and Chemistry of Minerals, 43, 127136.CrossRefGoogle Scholar
Williams, S.A. (1963) Anthonyite and calumetite, two new minerals from the Michigan copper district. American Mineralogist, 48, 614619.Google Scholar
Yoshida, H., Noguchi, N., Matsushita, Y., Ishii, Y., Ihara, Y., Oda, M., Okabe, H., Yamashita, S., Nakazawa, Y., Takata, A., Kida, T., Narumi, Y. and Hagiwara, M. (2017) Unusual magnetic state with dual magnetic excitations in the single crystal of S = ½ kagome lattice antiferromagnet CaCu3(OH)6Cl2.0.6H2O. Journal of the Physical Society of Japan, 86, 033704.CrossRefGoogle Scholar
Supplementary material: PDF

Crichton et al. supplementary material

Crichton et al. supplementary material 1

Download Crichton et al. supplementary material(PDF)
PDF 82.6 KB
Supplementary material: File

Crichton et al. supplementary material

Crichton et al. supplementary material 2

Download Crichton et al. supplementary material(File)
File 522 KB
Supplementary material: File

Crichton et al. supplementary material

Crichton et al. supplementary material 3

Download Crichton et al. supplementary material(File)
File 148.6 KB