Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:05:14.902Z Has data issue: false hasContentIssue false

Sapozhnikovite, Na8(Al6Si6O24)(HS)2, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula

Published online by Cambridge University Press:  10 December 2021

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygina str. 19, 119991Moscow, Russia
Roman Yu. Shendrik
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, 1a Favorskii St., Irkutsk, 664033, Russia
Dmitry A. Varlamov
Affiliation:
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, 142432Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034St Petersburg, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
*
*Author for correspondence: Nikita V. Chukanov, Email: [email protected]

Abstract

The new sodalite-group mineral sapozhnikovite, ideally Na8(Al6Si6O24)(HS)2, was discovered in a hydrothermally altered urtite-like rock at Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are nepheline, aegirine, potassic feldspar, albite, kyanoxalite, natrolite, fluorapatite, fluorcaphite, lomonosovite (partially or completely altered to murmanite) and loparite-(Ce). Sapozhnikovite forms isolated colourless to pale greyish anhedral equant grains up to 5 mm across. The streak is white and the lustre is vitreous. Strong orange fluorescence under longwave UV radiation (λ = 330 nm) and weak yellow-orange fluorescence under shortwave UV radiation (λ = 245 nm) is observed. Sapozhnikovite is brittle, with a Mohs hardness of 5½. Cleavage is imperfect on (110). Density measured by flotation in heavy liquids is equal to 2.25(1) g⋅cm–3. The calculated density is 2.255 g⋅cm–3. Sapozhnikovite is characterised by infrared, Raman, electron spin resonance, NIR-Vis-UV absorption, and photoluminescence spectroscopy. The chemical composition is (wt.%, electron microprobe, H2O determined by gas chromatography of ignition products): Na2O 25.05, Al2O3 32.44, SiO2 37.58, HS 4.33, Cl 2.22, H2O 0.30, –O≡(Cl,HS) –1.55, total 100.37. The empirical formula is Na7.73Al6.08Si5.97O24(HS)1.25Cl0.60⋅0.16H2O. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R1 = 1.62%. Sapozhnikovite is cubic, P$\bar{4}$3n, with a = 8.9146(1) Å, V = 708.45(2) Å3 and Z = 1. The new mineral is isostructural with sodalite. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.30 (37) (110), 3.638 (100) (211), 2.821 (14) (310), 2.572 (18) (222), 2.382 (16) (321) and 2.101 (29) (411). The mineral is named in honour of the Russian mineralogist and crystallographer Dr. Anatoly Nikolaevich Sapozhnikov (b. 1946).

Type
Article
Copyright
Copyright © Institute of Problems of Chemical Physics, Russian Academy of Sciences, 2021. Published by Cambridge University Press on behalf of the Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Charles A Geiger

References

Bokiy, G.B. and Borutskiy, B.E. (editors) (2003) Minerals. Vol. 2: Framework Silicates. Moscow, Nauka, 379 pp. [in Russian].Google Scholar
Bonaccorsi, E. and Merlino, S. (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H Phases. Pp. 241290 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Bragin, J., Diem, M., Guthals, D., Chang, S. (1977) The vibrational spectrum and lattice dynamics of polycrystalline ammonium hydrosulfide. Journal of Chemical Physics, 67, 12471256. https://doi.org/10.1063/1.434936CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.), 146, 104107 [in Russian].Google Scholar
Burragato, F., Maras, A. and Rossi, A. (1982) The sodalite group minerals in the volcanic areas of Latium. Neues Jahrbuch für Mineralogie Monatshefte, 433445.Google Scholar
Callens, F., Maes, F., Matthys, P. and Boesman, E. (1989) 33S splittings of some sulphur centres in KCl and NaCl. Journal of Physics: Condensed Matter, 1, 69216928, https://doi.org/10.1088/0953-8984/1/39/002.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, https://doi.org/10.1007/978-94-007-7128-4.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham–Heidelberg–Dordrecht–New York–London, https://doi.org/10.1007/978-3-319-25349-7.CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Olysych, L.V., Massa, W., Yakubovich, O.V., Zadov, A.E., Rastsvetaeva, R.K. and Vigasina, M.F. (2010) Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola peninsula. Geology of Ore Deposits, 52, 778790.CrossRefGoogle Scholar
Chukanov, N.V., Vigasina, M.F., Zubkova, N.V., Pekov, I.V., Schäfer, C., Kasatkin, A.V., Yapaskurt, V.O. and Pushcharovsky, D.Yu. (2020a) Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals, 10, 363, https://doi.org/10.3390/min10040363CrossRefGoogle Scholar
Chukanov, N.V., Sapozhnikov, A.N., Shendrik, R.Yu., Vigasina, M.F. and Steudel, R. (2020b) Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits. Minerals, 10, 1042, https://doi.org/10.3390/min10111042CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M. and Rastsvetaeva, R.K. (2021a) Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: a review. Microporous and Mesoporous Materials, 323, article No. 111098, https://doi.org/10.1016/j.micromeso.2021.111098CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Shendrik, R.Y., Varlamov, D.A., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Yapaskurt, V.O. and Pushcharovsky, D.Y. (2021b) Sapozhnikovite, IMA 2021-030. CNMNC Newsletter 62. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.62Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock-forming Minerals. Vol. 4: Framework Silicates. 1st Edition. Longmans, London, pp. 289302.Google Scholar
Ermolaeva, V.N., Chukanov, N.V., Pekov, I.V. and Kogarko, L.N. (2009) The geochemical and genetic role of organic substances in postmagmatic derivatives of alkaline plutons. Geology of Ore Deposits, 51, 513524.CrossRefGoogle Scholar
Fischer, F. and Gründig, H. (1965) Optische Absorption und photochemisches Verhalten von SH-, S- und S-Zentren in KCl-Kristallen. Zeitschrift für Physik, 184, 299309, https://doi.org/10.1007/BF01383826CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1984) The crystal structures of sodalite-group minerals. Acta Crystallographica, 40, 613.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1989) The structure of nosean, ideally Na8[Al6Si6O24]SO4⋅H2O. The Canadian Mineralogist, 27, 165172.Google Scholar
Hausmann, A. (1966) Elektronenspin-Resonanz in Alkalihalogenid-Kristallen mit Schwefel- und Selenzusatzen. Zeitschrift für Physik, 192, 313328.CrossRefGoogle Scholar
Hettmann, K., Wenzel, T., Marks, M. and Markl, G. (2012) The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. American Mineralogist, 97, 16531661, http://dx.doi.org/10.2138/am.2012.4031CrossRefGoogle Scholar
Hogarth, D.D. and Griffin, W.L. (1976) New data on lazurite. Lithos, 9, 3954.CrossRefGoogle Scholar
Iton, L.E. and Turkevich, J. (1977) Electron paramagnetic resonance of rare earth ions in zeolites. Journal of Physical Chemistry, 81, 435449, https://doi.org/10.1021/j100520a015.CrossRefGoogle Scholar
Kasuya, M., Brumby, S. and Chappell, J. (1991) ESR signals from natural gypsum single crystals: implications for ESR dating. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18, 329333. https://doi.org/10.1016/1359-0189(91)90027-FCrossRefGoogle Scholar
Kirk, R.D., Schulman, J.H. and Rosenstock, H.B. (1965) Structure in the luminescence emission of the S2 ion. Solid State Communications, 3, 235239.CrossRefGoogle Scholar
Kowalak, S., Jankowska, A., Zeidler, S. and Wiećkowski, A.B. (2007) Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. Journal of Solid State Chemistry, 180, 11191124, https://doi.org/10.1016/j.jssc.2007.01.004.CrossRefGoogle Scholar
Kuribayashi, T., Aoki, S. and Nagase, T. (2018) Thermal behavior of modulated haüyne from Eifel, Germany: In situ high-temperature single-crystal X-ray diffraction study. Journal of Mineralogical and Petrological Sciences, 113, 5155.CrossRefGoogle Scholar
Lin, J., Chen, N., Huang, D. and Pan, Y. (2013) Iron pairs in beryl: New insights from electron paramagnetic resonance, synchrotron X-ray absorption spectroscopy, and ab initio calculations. American Mineralogist, 98, 17451753, https://doi.org/10.2138/am.2013.4472.CrossRefGoogle Scholar
Lin, H., Chu Rong Gui, S., Imakita, K. and Fujii, M. (2014) Enhanced near infrared emission from the partially vitrified Nd3+ and silver co-doped zeolite Y. Journal of Applied Physics, 115, 033507, https://doi.org/10.1063/1.4862232.CrossRefGoogle Scholar
Löhn, J. and Schulz, H. (1968) Strukturverfeinerung am gestörten Haüyn, (Na5K1Ca2)Al6Si6O24(SO4)1.5, Neues Jahrbuch für Mineralogie, Abhandlungen, 109, 201210 [in German].Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2021) Newsletter 60. Mineralogical Magazine, 85, 454458.CrossRefGoogle Scholar
Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry. John Wiley and Sons, New York.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley and Sons, Hoboken.Google Scholar
Nespolo, M. and Ferraris, G. (2000) Twinning by syngonic and metric merohedry. Analysis, classification and effects on the diffraction pattern. Zeitschrift für Kristallographie, 215, 7781.CrossRefGoogle Scholar
Pankratova, V., Kozlova, A.P., Buzanov, O.A., Chernenko, K., Shendrik, R., Sarakovskis, A. and Pankratov, V. (2020) Time-resolved luminescence and excitation spectroscopy of co-doped Gd3Ga3Al2O12 scintillating crystals. Scientific Reports, 10, 20388, https://doi.org/10.1038/s41598-020-77451-x.CrossRefGoogle ScholarPubMed
Peterson, R.C. (1983) The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec. The Canadian Mineralogist, 21, 549552.Google Scholar
Radomskaya, T.A., Kaneva, E.V., Shendrik, R.Yu., Suvorova, L.F. and Vladykin, N.V. (2021) Sulfur-bearing sodalite, hackmanite, in alkaline pegmatites of the Inagli massif (Aldan Shield): Crystal chemical features, photochromism, and luminescence. Geology of Ore Deposits, 63(7), 19, https://doi.org/10.1134/S1075701521070060.CrossRefGoogle Scholar
Raulin, K., Gobeltz, N., Vezin, H., Touat, N., Ledé, B. and Moissette, A. (2011) Identification of the EPR signal of S2 in green ultramarine pigments. Physical Chemistry Chemical Physics, 13(20), 92539259, https://doi.org/10.1039/C0CP02970J.CrossRefGoogle Scholar
Rejmak, P. (2018) Structural, optical, and magnetic properties of ultramarine pigments: A DFT insight. The Journal of Physical Chemistry C, 122(51), 2933829349, https://doi.org/10.1021/acs.jpcc.8b09856.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2018) CrysAlisPro Software System, v. 1.171.39.46, Rigaku Corporation, Oxford, UK.Google Scholar
Ryabov, I.D., Bershov, L.V., Speranskiy, A.V. and Ganeev, I.G. (1983) Electron paramagnetic resonance of PO32− and SO3 radicals in anhydrite, celestite and barite: the hyperfine structure and dynamics. Physics and Chemistry of Minerals, 10(1), 2126, https://doi.org/10.1007/BF01204322.CrossRefGoogle Scholar
Sapozhnikov, A.N. (1990) Indexing of additional reflections on the X-ray Debye diffraction patterns of lazurite concerning the study of modulation of its structure. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva (Proceedings of the Soviet Mineralogical Society), 119(1), 110116 [in Russian].Google Scholar
Sapozhnikov, A.N., Tauson, V.L., Lipko, S.V., Shendrik, R.Yu., Levitskii, V.I., Suvorova, L.F., Chukanov, N.V. and Vigasina, M.F. (2021) On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)nH2O. American Mineralogist, 106, https://doi.org/10.2138/am-2020-7317.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sheppard, N. (1949) The assignment of the vibrational spectra of ethyl mercaptan and the ethyl halides, and the characterization of an SH deformation frequency. The Journal of Chemical Physics, 17, 7983, https://doi.org/10.1063/1.1747057.CrossRefGoogle Scholar
Sidike, A., Sawuti, A., Wang, X.M., Zhu, H.J., Kobayashi, S., Kusachi, I. and Yamashita, N. (2007) Fine structure in photoluminescence spectrum of S2 center in sodalite. Physics and Chemistry of Minerals, 34(7), 477484, https://doi.org/10.1007/s00269-007-0161-y.CrossRefGoogle Scholar
Symons, M.C.R. (1999) The radical-cation of hydrogen sulfide. Physical Chemistry & Chemical Physics, 1, 47674768, https://doi.org/10.1039/A906248C.CrossRefGoogle Scholar
Tauson, V.L., Sapozhnikov, A.N., Shinkareva, S.N. and Lustenberg, E.E. (2011) Indicative properties of lazurite as a member of clathrasil mineral family. Doklady Earth Sciences, 441, 17321737, https://doi.org/10.1134/S1028334X11120312CrossRefGoogle Scholar
Tauson, V.L., Goettlicher, J., Sapozhnikov, A.N., Mangold, S., Shinkareva, S.N. and Lustenberg, E.E. (2012) Sulphur speciation in lazurite-type minerals (Na,Ca)8[Al6Si6O24](SO4,S)2 and their annealing products: a comparative XPS and XAS study. European Journal of Mineralogy, 24, 133152, https://doi.org/10.1127/0935-1221/2011/0023-2132CrossRefGoogle Scholar
Taylor, D. (1967) The sodalite group of minerals. Contributions to Mineralogy and Petrology, 16, 172188.CrossRefGoogle Scholar
Vannotti, L.E. and Morton, J.R. (1967) Paramagnetic-resonance spectra of S2 in alkali halides. Physical Review, 161, 282286, https://doi.org/10.1103/PhysRev.161.282.CrossRefGoogle Scholar
Vassilikou-Dova, A.B. and Lehmann, G.P (1990) Paramagnetic defects in the mineral haüyne. Crystal Research & Technology, 25, 525529, https://doi.org/10.1002/crat.2170250513.CrossRefGoogle Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material 1

Download Chukanov et al. supplementary material(File)
File 405.9 KB
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material 2

Download Chukanov et al. supplementary material(File)
File 51.8 KB