Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T22:26:54.409Z Has data issue: false hasContentIssue false

Phlogopite from the Ventaruolo subsynthem volcanics (Mt Vulture, Italy): a multi-method study

Published online by Cambridge University Press:  05 July 2018

E. Schingaro
Affiliation:
Dipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy
F. Scordari*
Affiliation:
Dipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy
S. Matarrese
Affiliation:
Dipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy
E. Mesto
Affiliation:
Dipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy
F. Stoppa
Affiliation:
Dipartimentodi Scienze della Terra, Università G. d’Annunzio, Via dei Vestini 3, I-66013 Chieti Scalo, Italy
G. Rosatelli
Affiliation:
Dipartimentodi Scienze della Terra, Università G. d’Annunzio, Via dei Vestini 3, I-66013 Chieti Scalo, Italy
G. Pedrazzi
Affiliation:
Dipartimento di Sanita’ Pubblica, Sezione di Fisica e CNISM, Plesso Biotecnologico Integrato, via Volturno 39, I-43100 Parma, Italy

Abstract

Volcanic activity at Mt Vulture lasted throughout the Middle Pleistocene and produced SiO2- undersaturated volcanics. Deposits from the Monte Vulture stratovolcano have been classified into four subsynthems and clustered into the Barile Synthem. In the present investigation, trioctahedral micas from the uppermost units (the Ventaruolo Subsynthem) of the Barile Synthem are considered. The samples are labelled VUT187. The phlogopitic micas were separated from the host rock (an olivinefoidite) and underwent chemical (electron microprobe analysis - EMPA and C-H-N), structural (singlecrystal X-ray diffraction) and spectroscopic (Mössbauer) investigations.

The EMPA yielded: MgO (17.62–21.89 wt.%), FeOtot (5.98–9.78 wt.%), TiO2 (1.81–3.92 wt.%) and Al2O3 (14.47–17.98 wt.%), with H2O contents = 2.86 (±0.42) wt.% determined by C-H-N analyses. Mössbauer investigation provided [VI]Fe2+ = 12.6%, [VI]Fe3+ = 87.4%. The chemical and structural data are consistent with the occurrence of Ti-oxy, [VI]M2+ + 2(OH)[VI]Ti4+ + 2O2– + H2, and M3+-oxy substitutions, [VI]M2+ + (OH)[VI]M3+ + O2– + 1/2H2, with M3+ = Fe3+, Al3+. In particular, Fe3+-oxy substitution has affected the Fe2+/Fe3+ ratioin the studied sample. This is probably due to the fact that interaction with underground water or a hydrothermal system may have altered the oxygen fugacity and raised the Fe3+ content of VUT187 phlogopite with respect to magmatic values.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betteridge, P.W., Carruthers, J.R., Copper, R.I., Prouth, K. and Watkin, D.J. (2003) CRYSTALS version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Bonadonna, F.P., Brocchini, D., Laurenzi, M.A., Principe, C. and Ferrara, G. (1998) Stratigraphical and chronological correlations between Monte Vulture volcanics and sedimentary deposits of Venosa basin. Quaternary International, 47, 87–96.Google Scholar
Brigatti, M.F., Lalonde, A.E. and Medici, L. (1999) Crystal chemistry of IVFe3+–rich phlogopites: a combined single crystal X–ray study and Mössbauer study. 11th International Clay Conference Proceedings, Ottawa 1997, pp. 317–327.Google Scholar
Brigatti, M.F., Caprilli, E., Funiciello, R., Giordano, G., Mottana, A. and Poppi, L. (2005) Crystal chemistry of ferroan phlogopites from the Albano maar lake zone (Colli Albani volcano, central Italy). European Journal of Mineralogy, 17, 611–621.CrossRefGoogle Scholar
Brocchini, D., La Volpe, L., Laurenzi, M.A. and Principe, C. (1994) Storia evolutiva del Monte Vulture. Plinius, 12, 22–25.Google Scholar
Bruker (2003a) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2003b) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Burkhard, D.J.M., Ulmer, G.C., Redhammer, G. and Myer, G.H. (1999) Dynamic electrochemical assessment of redox reactions in natural micas between 613 and 1373 K at 105 Pa. American Mineralogist, 84, 493–505.CrossRefGoogle Scholar
Cesare, B., Cruciani, G. and Russo, U. (2003) Hydrogen deficiency in Ti–rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal–chemical aspects and implications for high–temperature petrogenesis. American Mineralogist, 88, 583–595.CrossRefGoogle Scholar
Cruciani, G. and Zanazzi, P.F. (1994) Cation partitioning and substitution mechanism in 1M phlogopite: A crystal chemical study. American Mineralogist, 79, 289–301.Google Scholar
Donnay, G., Morimoto, N., Takeda, H. and Donnay, J.D.H. (1964a) Trioctahedral one–layer micas. I. Crystal structure of a synthetic iron mica. Acta Crystallographica, 17, 1369–1373.CrossRefGoogle Scholar
Donnay, G., Donnay, J.D.H. and Takeda, H. (1964b) Trioctahedral one–layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Crystallographica, 17, 1374–1381.CrossRefGoogle Scholar
Ďurovíč, S. (1994) Classification of phyllosilicates according to the symmetry of their octahedral sheets. Ceramics–Silikàty, 38, 81–84.Google Scholar
Dyar, M.D. (2002) Optical and Mössbauer spectroscopy of iron in micas. Pp. 313–340 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. and Guggenheim, S., editors). Reviews in Mineralogy and Geochemistry 46, Mineralogical Society of America, Washington, D.C. Google Scholar
Fabbrizio, A., Rouse, J.P. and Carroll, M.R. (2006) New experimental data on biotite+magnetite+sanidine saturated phonolitic melts and application to the estimation of magmatic water fugacity. American Mineralogist, 91, 1863–1870.CrossRefGoogle Scholar
Feeley, T.C. and Sharp, D. (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology, 24, 1021–1024.2.3.CO;2>CrossRefGoogle Scholar
Feldstein, S.N., Lang, R.A., Vennemann, T. and O’Neil, J.R. (1996) Ferric–ferrous ratios, H2O contents and D/H ratios of phlogopite and biotite from lavas of different tectonic regimes. Contributions to Mineralogy and Petrology, 126, 51–66.CrossRefGoogle Scholar
Giannandrea, P., La Volpe, L., Principe, C. and Schiattarella, M. (2006) Unitàstratigrafiche a limiti inconformi e storia evolutiva del vulcano mediopleistocenico del Monte Vulture (Appennino Meridionale, Italia). Bollettino della Societa’ Geologica Italiana, 125, 67–92.Google Scholar
Güven, N. (1971) The crystal structure of 2M1 phengite and 2M1 muscovite. Zeitschrift für Kristallographie, 134, 196–212.Google Scholar
Hazen, R.M. and Burnham, C.W. (1973) The crystal structure of one layer phlogopite and annite. American Mineralogist, 58, 889–900.Google Scholar
Henry, D.J. and Guidotti, C.V. (2002) Titanium in biotite from metapelitic rocks: Temperature effects, crystal–chemical controls and petrologic applications. American Mineralogist, 87, 375–382.CrossRefGoogle Scholar
Henry, D.J., Guidotti, C.V. and Thompson, J. (2005) The Ti–saturation surface for low–to–medium pressure metapelitic biotites: implications for geothermometry and Ti–substitution mechanisms. American Mineralogist, 90, 316–328.CrossRefGoogle Scholar
Kleiman, L.E., Saragovi, C., Puglisi, C. and Labenski De Kanter, F. (1992) Biotite oxidation processes in ash–flow tuffs (Mendoza, Argentina): a Mössbauer spectroscopy and chemical study. Chemical Geology, 97, 251–264.CrossRefGoogle Scholar
Lagarec, K. and Rancourt, D.G. (1997) Extended Voigtbased analytic lineshape method for determining Ndimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B129, 266–280.Google Scholar
Lagarec, K. and Rancourt, D.G. (1998) RECOIL. Mössbauer spectral analysis software. University of Ottawa, Canada (www.isapps.ca/recoil).Google Scholar
Laurenzi, M.A., Brocchini, D., Principe, C. and Ferrara, G. (1993) Mt. Vulture volcano chronostratigraphy and the effectiveness of dating young phlogopites. Terra Abstracts, 5, 572–573.Google Scholar
Laurora, A., Brigatti, M.F., Mottana, A., Malferrari, D. and Caprilli, E. (2007) Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: A case study from Mt. Sassetto (Tolfa district, Latium, central Italy). American Mineralogist, 92, 468–480.CrossRefGoogle Scholar
Matarrese, S. (2007) Cristallochimica comparativa di flogopiti del Monte Vulture. PhD thesis, University of Bari, Italy, 170 pp.Google Scholar
Matarrese, S., Mesto, E., Pedrazzi, G., Schingaro, E. and Scordari, F. (2005) Trioctahedral micas from the youngest volcanics of Mt. Vulture (Pz, Italy): a crystal chemical study. International workshop Micas@Italy, Rimini (Italy), February 9–11, 2005, Book of Abstracts, p. 33.Google Scholar
Matarrese, S., Schingaro, E., Scordari, F., Stoppa, F., Rosatelli, G., Pedrazzi, G. and Ottolini, L. (2008) Crystal chemistry of phlogopite from Vulture– S. Michele subsynthem volcanics (Mt. Vulture, Italy) and volcanological implications. American Mineralogist, 93, 426–437.CrossRefGoogle Scholar
Mesto, E., Schingaro, E., Scordari, F. and Ottolini. L. (2006) Electron probe microanalysis, secondary ion mass spectrometry and single crystal X–ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: consideration of cation partitioning. American Mineralogist, 91, 182–190.CrossRefGoogle Scholar
Nespolo, M. and Ferraris, G. (2001) Effects of the stacking faults on the calculated electron density of mica polytypes–The Ďurovíčeffect. European Journal of Mineralogy, 13, 1035–1045.CrossRefGoogle Scholar
Ohta, T., Takeda, H. and Takéuchi, Y. (1982) Mica polytypism: Similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite. American Mineralogist, 67, 298–310.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ f(rZ) procedure for improved quantitative micro–analysis. Microbeam Analysis, 104–160.Google Scholar
Rancourt, D.G. and Ping, J.Y. (1991) Voigt–based methods for arbitrary–shape static hyperfine parameter distribution in Mössbauer spectroscopy. Nuclear instruments and Methods in Physics Research, B58, 85–97.Google Scholar
Rancourt, D.G., Tume, P. and Lalonde, A.E. (1993) Kinetics of the (Fe 2+ OH)mica–>(Fe3+O2–)mica + H oxidation reaction in bulk single crystal biotite studied by Mössbauer spectroscopy. Physics and Chemistry of Minerals, 20, 276–284.CrossRefGoogle Scholar
Rancourt, D.G., Ping, J.Y. and Berman, R.G. (1994) Mössbauer spectroscopy of minerals III. Octahedralsite Fe2+ quadrupole splitting distributions in the phlogopite–annite series. Physics and Chemistry of Minerals, 21, 258–267.Google Scholar
Rancourt, D.G., Ping, J.Y. and Robert, J.L. (1996) Octahedral site Fe2+ quadrupole splittings distributions from Mössbauer spectroscopy along the (OH, F) join. Physics and Chemistry of Minerals, 23, 63–71.CrossRefGoogle Scholar
Redhammer, G.J. (1998) Characterization of synthetic trioctahedral micas by Mössbauer spectroscopy. Hyperfine Interactions, 117, 85–115.CrossRefGoogle Scholar
Redhammer, G.J. and Roth, G. (2002) Single–crystal structure refinement and crystal chemistry of synthetic trioctahedral micas KM3(Al3+, Si4+)4O10 (OH)2 where M = Ni2+, Mg2+, Co2+ . American Mineralogist, 87, 1464–1476.CrossRefGoogle Scholar
Redhammer, G.J., Amthauer, G., Lottermoser, W., Bernroider, M., Tippelt, G. and Roth, G. (2005) X–ray powder diffraction and 57Fe–Mössbauer spectroscopy of synthetic trioctahedral micas {K}[Me3]<TSi3>O10(OH)2, Me = Ni2+, Mg2+, Co2+, Fe2+; T = Al3+, Fe3+ . Mineralogy and Petrology, 85, 89–115.CrossRefGoogle Scholar
Renner, B. and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Zeitschrift für Kristallographie, 175, 43–59.Google Scholar
Rieder, M., Cavazzini, G., D’Yakonov, Y.S., Frank–Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.–L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of micas. The Canadian Mineralogist, 36, 905–912.Google Scholar
Righter, K. and Carmichael, I.S.E. (1996) Phase equilibria of phlogopite lamprophyres from Western Mexico: biotite–liquid equilibria and P–T estimates for biotite–bearing igneous rocks. Contributions to Mineralogy and Petrology, 123, 1–21.CrossRefGoogle Scholar
Righter, K., Dyar, M.D., Delaney, J.S., Vennemann, T.W., Hervig, R.L. and King, P.L. (2002) Correlations of octahedral cations with OH, O2−, Cland Fin biotite from volcanic rocks and xenoliths. American Mineralogist, 87, 142–153.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.CrossRefGoogle ScholarPubMed
Salvador, A. (1987) Unconformity–bounded stratigraphic units. Geological Society of America Bulletin, 98, 232–237.Google Scholar
Schingaro, E., Scordari, F. and Ventruti, G. (2001) Trioctahedral micas–1M from Mt. Vulture (Italy) Structural disorder and crystal chemistry. European Journal of Mineralogy, 13, 1057–1069.CrossRefGoogle Scholar
Schingaro, E., Scordari, F., Mesto, E., Brigatti, M.F. and Pedrazzi, G. (2005) Cation site partitioning in Ti–rich micas from Black Hill (Australia) a multi–technical approach. Clays and Clay Minerals, 53, 179–189.CrossRefGoogle Scholar
Scordari, F., Ventruti, G., Sabato, A., Bellatreccia, F., Della Ventura, G. and Pedrazzi, G. (2006) Ti–rich phlogopite from Monte Vulture (Potenza, Italy) investigated by a multi–analytical approach: substitutional mechanisms and orientation of the OH dipoles. European Journal of Mineralogy, 18, 379–391.CrossRefGoogle Scholar
Scordari, F., Schingaro, E., Ventruti, G., Lacalamita, M. and Ottolini, L. (2008) Red micas from basal ignimbrites of Mt. Vulture (Italy): interlayer content appraisal by a multi–methodic approach. Physics and Chemistry of Minerals, 35, 163–174.CrossRefGoogle Scholar
Shabani, A.A.T. (1999) Mineral chemistry and Mössbauer spectroscopy of micas from granitic rocks of the Canadian Appalachians. PhD thesis, University of Ottawa, Ottawa, Canada.Google Scholar
Shabani, A.A.T., Lalonde, A.E. and Whalen, J.B. (2003) Composition of biotite from granitic rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator? The Canadian Mineralogist, 41, 1381–1396.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar
Sheldrick, G.M. (2003) SADABS, Pr ogram for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.Google Scholar
Stoppa, F., Rosatelli, G. and Principe, C. (2006) Classificazione modale delle vulcaniti del Monte Vulture. Pp. 87–103 in: La geologia del Monte Vulture (Principe, C., editor). Regione Basilicata, Italy.Google Scholar
Streckeisen, A.L. (1978) IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch für Mineralogie, Abhandlungen, 141, 1–14.Google Scholar
Toraya, H. (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Zeitschrift für Kristallographie, 157, 173–190.Google Scholar
Villa, I.M. (1985) Cronologia 39Ar/40Ar del complesso vulcanicodel Monte Vulture. Rendiconti SIMP, 41, 146–147.Google Scholar
Virgo, D. and Popp, R.K. (2000) Hydrogen deficiency in mantle–derived phlogopites. American Mineralogist, 85, 753–759.CrossRefGoogle Scholar
Waters, D.J. and Charnley, N.R. (2002) Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite. American Mineralogist, 87, 383–396.CrossRefGoogle Scholar
Weiss, Z., Rieder, M. and Chmíelovà, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665–682.CrossRefGoogle Scholar
Supplementary material: PDF

Schingaro et al. supplementary material

Tables 2a, 2b, 7

Download Schingaro et al. supplementary material(PDF)
PDF 50.4 KB