Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:08:57.488Z Has data issue: false hasContentIssue false

Panskyite, Pd9Ag2Pb2S4, a new platinum group mineral from the Southern Kievey ore occurrence of the Fedorova–Pana layered intrusion, Kola Peninsula, Russia

Published online by Cambridge University Press:  21 December 2020

Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00Prague, Czech Republic
Viktor V. Subbotin
Affiliation:
Geological Institute, Kola Science Centre of the Russian Academy of Sciences, 184209Apatity, Russia
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00Prague, Czech Republic
Yevgeny E. Savchenko
Affiliation:
Geological Institute, Kola Science Centre of the Russian Academy of Sciences, 184209Apatity, Russia
Chris J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, LondonSW7 5BD, UK
Dmitriy A. Gabov
Affiliation:
Geological Institute, Kola Science Centre of the Russian Academy of Sciences, 184209Apatity, Russia
Jakub Plášil
Affiliation:
Institute of Physics, AS CR v.v.i. Na Slovance 2, 182 21, Prague 8, Czech Republic
*
*Author for correspondence: Anna Vymazalová, Email: [email protected]

Abstract

Panskyite, Pd9Ag2Pb2S4, is a new mineral (IMA2020–039) discovered in the platinum-group element mineralisation of the Southern Kievey ore occurrence of the Fedorova–Pana layered intrusion, Kola Peninsula, Russia. It forms tiny anhedral grains (of 0.5 to 10 μm in size) in the interstices of rock-forming silicates, often forming tiny inclusions in base-metal sulfides (millerite, chalcopyrite, bornite and chalcocite) and complex intergrowths with other platinum group minerals (zvyagintsevite, laflammeite, vysotskite, thalhammerite, unnamed phase Pd9Ag2(Tl,Pb)2S4 and others). In plane-polarised light, panskyite is creamy white with weak bireflectance, weak pleochroism and distinct anisotropy with brown to grey rotation tints; it exhibits no internal reflections. Reflectance values for panskyite in air (R1, R2 in %) are: 43.8, 44.1 at 470 nm; 44.4, 44.7 at 546 nm; 45.6, 45.8 at 589 nm; and 47.2, 47.2 at 650 nm. Twelve electron-microprobe analyses of panskyite gave an average composition: Pd 55.61, Ag 12.36, Pb 23.50, Fe 0.21, Ni 0.24 and S 7.17 total 99.09 wt.%, corresponding to the formula (Pd9.05Fe0.07Ni0.07)Σ9.19Ag1.98Pb1.96S3.87 based on 17 atoms; the average of nine analyses on the synthetic analogue is: Pd 57.02, Ag 14.17, Pb 21.81 and S 7.44, total 100.44 wt.%, corresponding to Pd9.07Ag2.22Pb1.78S3.93. The density, calculated on the basis of the empirical formula, is 9.81 g/cm3. The mineral is tetragonal, space group I4/mmm, with a = 7.973(3), c = 9.139(3) Å, V = 581.0(4) Å3 and Z = 2. The crystal structure was solved from the single-crystal and powder X-ray diffraction data of synthetic Pd9Ag2Pb2S4. Panskyite is isostructural with thalhammerite (Pd9Ag2Bi2S4). The mineral name is for the locality, the Pansky massif of the Fedorova–Pana layered intrusion in the Kola Peninsula, Russia.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Brese, N.E., Squattrito, P.J. and Ibers, J.A. (1985) Reinvestigation of the structure PdS. Acta Crystallographica, C41, 18291830.Google Scholar
Bruker AXS (2014) Topas 5, Computing Program. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Korchagin, A.U. and Mitrofanov, F.P. (2008) Deposits of PGE of the Western part of Fedorovo–Pana Tundra (Fedorovo and Malaya Pana): status and development prospects. Pp. 4352 in: An Interreg Tacis Project: Strategic Mineral Resources of Lapland – Base for the Sustainable Development of the North. Project publication, volume I. KSC Russian Academy of Science, Apatity, Russia.Google Scholar
Korchagin, A.U., Subbotin, V.V., Mitrofanov, F.P. and Mineev, S.D. (2009) Kievey PGE-bearing deposit in the West Pana layered intrusion. Pp. 1232 in: An Interreg Tacis Project: Strategic Mineral Resources of Lapland – Base for the Sustainable Development of the North. Project publication, volume II. KSC Russian Academy of Science, Apatity, Russia.Google Scholar
Korchagin, A.U., Goncharov, Yu.V., Subbotin, V.V., Groshev, N.Yu., Gabov, D.A., Ivanov, A.N. and Savchenko, Ye.E. (2016) Geology and ores composition of the North Kamennik low-sulfide PGE deposit in the West–Pansky massif, Kola Peninsula. Ore and Metals, 1, 4251 [in Russian].Google Scholar
Naldrett, A.J. (2004) Magmatic Sulphide Deposits: Geology, Geochemistry and Exploration. Springer Verlag, New York, 728 p.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 41, 786790.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Schissel, D., Tsvetkov, A.A., Mitrofanov, F.P. and Korchagin, A.U. (2002) Basal platinum-group element mineralization in the Federov Pansky layered mafic intrusion, Kola Peninsula, Russia. Economic Geology, 97, 16571677.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Subbotin, V.V., Gabov, D.A., Korchagin, A.U. and Savchenko, E.E. (2017) Gold and silver in the composition of PGE ores of the Fedorovo–Pana Layered Intrusive Complex. Herald of the Kola Science Centre of the RAS, 1, 5365 [in Russian].Google Scholar
Subbotin, V.V., Vymazalová, A., Laufek, F., Savchenko, Y.E., Stanley, C.J. Gabov, D.A and Plášil, J. (2019) Mitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. Mineralogical Magazine, 83, 523530.CrossRefGoogle Scholar
Vymazalová, A., Grokhovskaya, T.L., Laufek, F. and Rassulov, V.A. (2014) Lukkulaisvaaraite, Pd14Ag2Te9, a new mineral from Lukkulaisvaara intrusion, northern Russian Karelia, Russia. Mineralogical Magazine, 78, 17431754.CrossRefGoogle Scholar
Vymazalová, A., Laufek, F., Sluzhenikin, S.F., Stanley, C.J., Kozlov, V.V., Chareev, D.A. and Lukashova, M.L. (2017) Kravtsovite, PdAg2S, a new mineral from Noril'sk – Talnakh deposit, Russia. European Journal of Mineralogy, 29, 597602.CrossRefGoogle Scholar
Vymazalová, A., Laufek, F., Sluzhenikin, S.F., Kozlov, V.V., Stanley, C.J., Plášil, J., Zaccarini, F., Garuti, G. and Bakker, R. (2018) Thalhammerite, Pd9Ag2Bi2S4, a new mineral from the Talnakh and Oktyabrsk deposits, Noril'sk region, Russia. Minerals, 8, 339.CrossRefGoogle Scholar
Vymazalová, A., Subbotin, V.V., Laufek, F., Savchenko, Y.E., Stanley, C.J., Gabov, D.A. and Plášil, J. (2020) Panskyite, IMA 2020–039. CNMNC Newsletter No. 57 ; Mineralogical Magazine, 84, https://doi.org/10.1180/mgm.2020.73Google Scholar
Supplementary material: File

Vymazalová et al. supplementary material

Vymazalová et al. supplementary material

Download Vymazalová et al. supplementary material(File)
File 9.5 KB