Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T21:46:30.411Z Has data issue: false hasContentIssue false

Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series

Published online by Cambridge University Press:  05 July 2018

C. Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
E. Bonaccorsi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
Y. Moëlo
Affiliation:
Institut des Matériaux Jean Rouxel, UMR 6502, CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 3, France
P. Orlandi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy Istituto di Geoscienze e Georisorse, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
L. Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, I-50121 Florence, Italy
M. D’Orazio
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
S. Vezzoni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
*

Abstract

The new mineral species arsiccioite, AgHg2TlAs2S6, was discovered in the baryte-pyrite-iron oxide ore deposit exploited at the Monte Arsiccio mine, near Sant’Anna di Stazzema (Apuan Alps, Tuscany, Italy). It occurs as anhedral grains scattered in microcrystalline baryte, associated with cinnabar, laffittite, protochabournéite, pyrite, realgar, Hg-bearing sphalerite and stibnite. Arsiccioite is red, with a metallic to sub-metallic lustre. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 29.0/29.4; 548.3: 27.6/28.3; 586.6: 26.1/26.5; 652.3: 24.2/24.6. Electron microprobe analyses give (wt.%): Cu 0.78(6), Ag 8.68(21), Zn 0.47(27), Fe 0.04(1), Hg 35.36(87), Cd 0.20(5), Tl 18.79(33), As 10.77(19), Sb 4.75(10), S 18.08(21), Se 0.07(5), total 97.99(44). On the basis of ΣMe = 6 a.p.f.u., the chemical formula is Ag0.87(2)Cu0.13(1)Zn0.08(4)Fe0.01(1)Hg1.91(5)Cd0.02(1)Tl1.00(2) (As1.56(2)Sb0.42(1))S1.98S6.12(6)Se0.01(1). Arsiccioite is tetragonal, I2m, with a 10.1386(6), c 11.3441(5) Å, V 1166.1(2) Å3, Z = 4. The main diffraction lines of the powder diagram are [d(in Å), visually estimated intensity, hkl]: 4.195, m, 211; 3.542, m, 103; 3.025, vs, 222; 2.636, m, 114; 2.518, s, 400 and 303. The crystal structure of arsiccioite has been refined by single-crystal X-ray data to a final R1 = 0.030, on the basis of 893 observed reflections. It shows a three dimensional framework of (Hg,Ag)- centred tetrahedra (1 M1 + 2 M2), with channels parallel to [001] hosting TlS6 and (As,Sb)S3 disymmetric polyhedra. Arsiccioite is derived from its isotype routhierite M1CuM2Hg2TlAs2S6 through the double heterovalent substitution M1Cu+ + M2Hg2+M1Hg2+ + M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Hg2+ and Cu+, entering the largest M2 site. The ideal crystal chemical formula of arsiccioite is M1HgM2(Hg0.5Ag0.5)2TlAs2S6. The crystal chemistry of the routhierite isotypic series is discussed. Finally, the distribution of Hg ore minerals in the Apuan Alps is reviewed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić-Žunić, T., Makovicky, E., Karanović, L., Poleti, D. and Graeser, S. (2006) The crystal structure of gabrielite, Tl2AgCu2As3S7, a new species of thallium sulfosalt from Lengenbach, Switzerland. The Canadian Mineralogist, 44, 141158.CrossRefGoogle Scholar
Biagioni, C. and Orlandi, P. (2009) Tiemannite e metacinabro della miniera Buca della Vena (Alpi Apuane). Atti della Società Toscana di Scienze Naturali, Memorie, 114, 1317.Google Scholar
Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Orlandi, P. (2013a) Mercury-arsenic sulfosalts from Apuan Alps (Tuscany, Italy). I. Routhierite, (Cu0.8Ag0.2)Hg2Tl(As1.4Sb0.6)S=2S6, from Monte Arsiccio mine: occurrence and crystal structure. European Journal of Mineralogy, DOI: 10.1127/0935-1221/2013/0025-2320.CrossRefGoogle Scholar
Biagioni, C., D’Orazio, M., Vezzoni, S., Dini, A. and Orlandi, P. (2013b) Mobilization of Tl-Hg-As-Sb- (Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology, 41, 747751.CrossRefGoogle Scholar
Biagioni, C., Orlandi, P., Pasero, M., Nestola, F. and Bindi, L. (2013c) Mapiquiroite, IMA 2013-010. CNMNC Newsletter No. 16, August 2013, page 2703; Mineralogical Magazine, 77, 26952709.Google Scholar
Bindi, L. (2008) Routhierite, Tl(Cu,Ag)(Hg,Zn)2 (As,Sb)2S6. Acta Crystallographica, C64, i95–i96.CrossRefGoogle Scholar
Bindi, L., Keutsch, F.M., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chañarcillo, Chile: crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist, 94, 609615.CrossRefGoogle Scholar
Bindi, L., Downs, R.T., Spry, P.G., Pinch, W.W. and Menchetti, S. (2012) A chemical and structural reexamination of fettelite samples from the type locality, Odenwald, southwest Germany. Mineralogical Magazine, 76, 551566.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, K.L. and Dickson, F.W. (1976) The crystal structure of synthetic christite, HgTlAsS3 . Zeitschrift für Kristallographie, 114, 367376.CrossRefGoogle Scholar
Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Chen, T.T. and Szymański, J.T. (1981) The structure and chemistry of galkhaite, a mercury sulfosalt containing Cs and Tl. The Canadian Mineralogist, 19, 571581.Google Scholar
Costagliola, P., Benvenuti, M., Tanelli, G., Cortecci, G. and Lattanzi, P. (1990) The barite-pyrite-iron oxides deposit of Monte Arsiccio (Apuane Alps). Geological setting, mineralogy, fluid inclusions, stable isotopes and genesis. Bollettino della Società Geologica Italiana, 109, 267277.Google Scholar
Dini, A. (1995) Metacinabro zincifero (leviglianite) e sfalerite mercurifera della miniera di Levigliani (Alpi Apuane, Toscana). Atti della Società Toscana di Scienze Naturali, Memorie, 102, 6772.Google Scholar
Dini, A. and Biagioni, C. (2010) I giacimenti mercuriferi di Levigliani e Ripa (Alpi Apuane): storia, genesi e mineralogia. Rivista Mineralogica Italiana, 1/2010, 1235.Google Scholar
Dini, A. and Orlandi, P. (1995) Coloradoite (HgTe) from Buca della Vena mine, Apuan Alps, Tuscany, Italy. Atti della Società Toscana di Scienze Naturali, Memorie, 102, 4750.Google Scholar
Dini, A., Benvenuti, M., Lattanzi, P. and Tanelli, G. (1995) Mineral assemblage in the Hg-Zn-(Fe)-S system at Levigliani, Tuscany, Italy. European Journal of Mineralogy, 7, 417427.CrossRefGoogle Scholar
Dini, A., Benvenuti, M., Costagliola, P. and Lattanzi, P. (2001) Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy). Ore Geology Reviews, 18, 149167.CrossRefGoogle Scholar
Engel, P., Nowacki, W., Balić-Žunić, T. and Šćavnićar, S. (1982) The crystal structure of simonite, TlHgAs3S6 . Zeitschrift für Kristallographie, 161, 159166.CrossRefGoogle Scholar
Fleet, M.E. (1953) The crystal structure and bonding of lorandite, Tl2As2S4 . Zeitschrift für Kristallographie, 138, 147160.CrossRefGoogle Scholar
Giester, G., Lengauer, C.L., Tillmans, E. and Zemann, J. (2002): Tl2S: Re-determination of crystal structure and stereochemical discussion. Journal of Solid State Chemistry, 168, 322330.CrossRefGoogle Scholar
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1992) Ernigglite (Tl2SnAs2S6), a new mineral from Lengenbach, Binntal (Switzerland): description and crystal structure determination based on data from synchrotron radiation. Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 293305.Google Scholar
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1995) Stalderite, TlCu(Zn,Fe,Hg)2As2S6 – a new mineral related to routhierite: description and crystal structure. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 337345.Google Scholar
Harris, D.C. (1989) The mineralogy and geochemistry of the Hemlo gold deposit, Ontario. Geological Survey of Canada, Economic Geology Reports, 38, 88 pp.Google Scholar
Harris, D.C., Roberts, A.C. and Criddle, A.J. (1989) Vaughanite, TlHgSb4S7, a new mineral from Hemlo, Ontario, Canada. Mineralogical Magazine, 53, 7983.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Johan, Z., Mantienne, J. and Picot, P. (1974) La routhiérite, TlHgAsS3, et la laffittite, AgHgAsS3, deux nouvelles espèces minerales. Bulletin de la Socié té française de Miné ralogie et de Cristallographie, 97, 4853.Google Scholar
Johan, Z., Kvaček, M. and Picot, P. (1976) La petrovicite, Cu3HgPbBiSe5, un nouveau minéral. Bulletin de la Société française de Minéralogie et de Cristallographie, 99, 310313.CrossRefGoogle Scholar
Kersten, C. (1843) Untersuchung eines quecksilberhaltigen Falherzes von Val di Castello in Toscana. Annalen der Physik, 251, 131135.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Makovicky, E., Forcher, K., Lottermoser, W. and Amthauer, G. (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineralogy and Petrology, 43, 7381.CrossRefGoogle Scholar
Merlino, S., Biagioni, C. and Orlandi, P. (2013) The crystal structure of grumiplucite: its OD character and structural relationships. Rendiconti Lincei Scienze Fisiche e Naturali, 24, 4752.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring., A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Moëlo, Y., Orlandi, P., Guillot-Deudon, C., Biagioni, C., Paar, W. and Evain, M. (2011) Lead-antimony sulfosalts from Tuscany (Italy). XI. The new mineral species parasterryite, Ag4Pb20(Sb14.5As9.5)S24S58, and associated sterryite, Cu(Ag,Cu)3Pb19 (Sb,As)S22(As−As)S56, from the Pollone mine, Tuscany, Italy. The Canadian Mineralogist, 49, 623638.CrossRefGoogle Scholar
Ohmasa, M. and Nowacki, W. (1971) The crystal structure of vrbaite, Hg3Tl4As8Sb2S20. Zeitschrift für Kristallographie, 134, 360380.Google Scholar
Orlandi, P., Moëlo, Y., Meerschaut, A., Palvadeau, P. and Léone, P. (2005) Lead-antimony sulfosalts from Tuscany (Italy). VIII. Rouxelite, Cu2HgPb22Sb28S64(O,S)2, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. The Canadian Mineralogist, 43, 919933.CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y., Campostrini, I. and Meerschaut, A. (2007) Lead-antimony sulfosalts from Tuscany (Italy). IX. Marrucciite, Hg3Pb16Sb18S46, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. European Journal of Mineralogy, 19, 267279.CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y. and Biagioni, C. (2010) Leadantimony sulfosalts from Tuscany (Italy). X. Dadsonite from the Buca della Vena mine and Birich izoklakeite from the Seravezza marble quarries. Periodico di Mineralogia, 79, 113121.Google Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Paar, W. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite, TlPb4(Sb7As2)S9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235251.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Moëlo, Y., Bonaccorsi, E. and Paar, W. (2013) Lead-antimony sulfosalts from Tuscany (Italy). XIII. Protochabourné ite, ~Tl2Pb(Sb9-8As1-2)S10S17, from the Monte Arsiccio mine: occurrence, crystal structure and relationship with chabournéite. The Canadian Mineralogist, 51, 475494.CrossRefGoogle Scholar
Paar, W.H., Pring, A., Moëlo, Y., Stanley, C.J., Putz, H., Topa, D., Roberts, A.C. and Braithwaite, R.S.W. (2009) Daliranite, PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine, 73, 871881.CrossRefGoogle Scholar
Pandeli, E., Bagnoli, P. and Negri, M. (2004) The Fornovolasco schists of the Apuan Alps (Northern Tuscany, Italy): a new hypothesis for their stratigraphic setting. Bollettino della Società Geologica Italiana, 123, 5366.Google Scholar
Parasyuk, O.V., Gulay, L.D., Piskach, L.V. and Gagalovska, O.P. (2002) The Ag2S-HgS-GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound. Journal of Alloys and Compounds, 336, 213217.CrossRefGoogle Scholar
Pervukhina, N.V., Borisov, S.V., Magarill, S.A., Vasil’ev, V.I. and Kuratieva, N.V. (2010) Redetermination and crystallographic analysis of the structure of Sb-containing laffittite, AgHg(As,Sb)S3 from Chauvai (Kyrgyzstan). Journal of Structural Chemistry, 51, 683688.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Spiridonov, E.M., Krapiva, L.Ya., Gapeev, A.K., Stepanov, V.I., Prushinskaya, E.Y. and Volgin, V.Y. (1981) Gruzdevite, Cu6Hg3Sb4S12 – a new mineral from the Chauvai antimony-mercury deposit, Central Asia. Doklady Academii Nauk SSSR, 261, 971976.(in Russian).Google Scholar
Srikrishnan, T. and Nowacki, W. (1975) A redetermination of the crystal structure of livingstonite, HgSb4S8. Zeitschrift für Kristallographie, 141, 174192.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System (9th ed.). Schweizerbart’sche, Stuttgart, Germany.Google Scholar
Vasil’ev, V.I., Pervukhina, N.V., Borisov, S.V., Magarill, S.A., Naumov, D.Yu. and Kurat’eva, N.V. (2010) Aktashite Cu6Hg3As4S12 from the Aktash deposit, Altai, Russia: refinement and crystal chemical analysis of the structure. Geology of Ore Deposits, 52, 656661.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar
Yang, H., Downs, R.T., Costin, G. and Eichler, C.M. (2007) The crystal structure of tvalchrelidzeite, Hg3SbAsS3, and a revision of its chemical formula. The Canadian Mineralogist, 45, 15291533.CrossRefGoogle Scholar