Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T19:18:25.474Z Has data issue: false hasContentIssue false

Manganoan deerite and calderitic garnet from high-pressure metamorphic Fe-Mn-rich quartzites on Andros Island, Greece

Published online by Cambridge University Press:  05 July 2018

Thomas Reinecke*
Affiliation:
Institut für Angewandte Geophysik, Petrologie und Lagerstättenforschung der Technischen Universität, Straße des 17 Juni 135, EB 310, D-1000 Berlin 12, F.R.G.

Abstract

Calderitic garnet and manganoan deerite have been found in Al-poor, Fe-Mn-rich quartzites associated with metabasic schists on the island of Andros, Cycladic blueschist belt, Greece. Calderitic garnet (30–45 mole % calderite, 55–70 mole % andradite, 0–2 mole % spessartine) occurs in paragenesis with quartz, rhodonite, rhodochrosite, Ni-Mn-bearing magnetite (2–20 mole % trevorite, 6–12 mole % jacobsite, 73–91 mole % Fe3O4), baryte, and orthite. Deerite is associated with quartz, garnet (rich in spessartine, almandine, and andradite), phengite, aegirine, magnetite (containing up to 12 mole % jacobsite), and crossite/riebeckite. Deerite contains 33.0–34.4 wt. % SiO2, 0.53–5.5 wt. % TiO2, 0.09–0.31 wt. % Al2O3, 11.9–33.9 wt. % MnO, 17.5–44.2 wt. % FeOtot, and 1.5–2.8 wt. % MgO. MnO contents correspond to 29–77 cation % Mn2+ per total R2+ cations. Deerites from Andros are thus closer to the hypothetical end-member mangano-deerite, Mn122+Fe3+6Si12O40(OH)10, than any other analysis of deerite so far published.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, S.O., and Gay, M. (1970) Bull. Soc.ft. Mineral. Crystallogr., 93, 263-4.Google Scholar
Bown, M.G., and McKie, D. (1965) Am. Mineral., 50, 278.Google Scholar
Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G.A., Keller, J., Harre, W., and Höhndorf, A. (1982) Geol. Jahrb. E 23, 971-64.Google Scholar
Bocquet, J., and Forette, M. (1973) Bull. Soc.fr. Minkral. Crystallogr., 96, 314-16.Google Scholar
Brown, E.H. (1974) Geol. Soc. Am. Bull., 85, 333-44.2.0.CO;2>CrossRefGoogle Scholar
Chopin, C. (1978) Bull. Minéral., 101, 514-31.CrossRefGoogle Scholar
Kohlmann, A. (1978) Die Überprägung hochdruckmetamorpher Serien auf der lnsel Tinos, Kykladen, Griechenland. Unpubl. Dipl. Thesis. Technische Universität Braunschweig.Google Scholar
Langer, K., Lattard, D., and Schreyer, W. (1977) Contrib.Minéral. Petrol., 60, 271-97.CrossRefGoogle Scholar
Lattard, D., and Schreyer, W. (1981) Bull. Mindral., 104, 431-40.CrossRefGoogle Scholar
Lattard, D., and Schreyer, W. (1983) Contrib. Mineral. Petrol., 84, 199-214.CrossRefGoogle Scholar
Maresch, W., and Mottana, A. (1976) Ibid. 55, 69-79.Google Scholar
Melidonis, N.G. (1980) The Geology of Greece, 13, Inst. Geol. Mineral. Explor. Athens (I.G.M.E.), 80 pp.Google Scholar
Muir Wood, R. (1979) Mineral. Mag., 43, 251-9.CrossRefGoogle Scholar
Muir Wood, R. (0982) Ibid. 45, 87-99.Google Scholar
Navrotsky, A., and Coons, W.E. (1976) Geochim. Cosmochim. Acta, 40, 1281-8.CrossRefGoogle Scholar
Reinecke, T. (1983) Mineralogie und Petrolooie der mangan- und eisenreichen Metasedimente yon Andros, Kykladen, Griechenland. Dissert. Thesis, Technische Universität Braunschweig.Google Scholar
Reinecke, T. (1986) Contrib. Mineral. Petrol., 94, 110-26.CrossRefGoogle Scholar
Okrusch, M., and Richter, P. (1985) Chem. Geol., 53, 249-78.Google Scholar
Schliestedt, M. (1978) Contrib. Mineral. Petrol., 66, 105-78.CrossRefGoogle Scholar
Schliestedt, M. (1980) Phasengleichgewichte in Hochdruckgesteinen yon Sifnos, Griechenland. Dissert. Thesis, Technische Universit∼it Braunschweig.Google Scholar