Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T04:15:07.216Z Has data issue: false hasContentIssue false

The Lundy granite: a geochemical and petrogenetic comparison with Hercynian and Tertiary granites

Published online by Cambridge University Press:  05 July 2018

Maurice Stone*
Affiliation:
Earth Resources Centre, University of Exeter, North Park Road, Exeter EX4 4QE

Abstract

New chemical data show that the two main granite types (G1 and G2) cannot be discriminated, but that microgranite sheets/dykes (G3) are significantly different and more evolved, largely as a result of biotite, accessory mineral, and plagioclase fractionation. The Lundy granite is similar to other Tertiary granites of Scotland and Ireland, in age, setting, possible high-temperature mineralogy, relationship to basic magmatism, and REE patterns. These features and a highly evolved chemistry suggest derivation from an unexposed more ‘primitive’ granite that, in turn, had a basaltic parentage. However, similarities with the nearby S-type Hercynian granites, such as high aluminium saturation index (and normative corundum), high trace alkali, Nb, and F contents, low Zr, and high initial Sr ratio suggest a significant crustal component. The problem is resolved by proposing either mixing of silicic magma derived by strong fractionation of basaltic magma with anatectic magma from a pelitic/semi-pelitic crustal source, or fractionation of basaltic magma heavily contaminated by assimilated crustal material. Both origins would yield the high REE contents and fiat REE patterns of a ‘primitive’ granite magma. Fractionation, perhaps of hornblende initially, and later, of biotite and accessory minerals together with feldspars, would produce the small volume of highly fractionated Lundy granite.

Type
Petrology and Experimental Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, M. J. (1989) The Cenozoic evolution of the Lundy pull-apart basin into the Lundy rhomb horst. Geol. Mag. 126, 187-98.CrossRefGoogle Scholar
Badham, J. P. N. and Halls, C. (1975) Microplate tectonics, oblique collisions, and evolution of the Hercynian orogenic systems. Geology, 3, 373-6.2.0.CO;2>CrossRefGoogle Scholar
Bell, J. D. (1982) Acid Intrusions. In Igneous Rocks of the British Isles” (Sutherland, D. S., ed.). J. Wiley & Sons, pp. 42–40.Google Scholar
Bott, M. H. P. and Tantrigoda, D. A. (1987) Interpretation of the gravity and magnetic anomalies over the Mull Tertiary intrusive complex, NW Scotland. J. Geol. Soc. London 144, 1-28.CrossRefGoogle Scholar
Bott, M. H. P. and Tuson, J. (1973) Deep structure beneath the Tertiary volcanic regions of Skye, Mull and Ardnamurchan, north-west Scotland. Nature Phys. Sci. 242, 114-6.CrossRefGoogle Scholar
Bott, M. H. P. and Watts, A. B. (1971) Deep structure of the continental margin adjacent to the British Isles. Rept. Inst. Geol. Sci. 70/14, 89109.Google Scholar
Bott, M. H. P., Day, A. A. and Masson-Smith, D. (1958) The geological interpretation of gravity and magnetic surveys in Devon and Cornwall. Phil. Trans'. R. Soc. London 251A, 161-91.Google Scholar
Bromley, A. V. (1975) Tin mineralization of Western Europe: is it related to crustal subduction. Trans. Inst. Min. Metall. 84, B2830.Google Scholar
Brookes, M. and Thompson, M. S. (1973) The geological interpretation of a gravity survey of the Bristol Channel. J. Geol. Soc. London, 129, 245-74.CrossRefGoogle Scholar
Chappell, B. W. and White, A. J. R. (1974) Two contrasting granite types. Pacific Geology, 8, 173-4.Google Scholar
Charoy, B. (1986) The genesis of the Cornubian batholith (South West England): the example of the Carnmenellis pluton. J. Petrol. 27, 571-604.CrossRefGoogle Scholar
Dangerfield, J. (1982) The Tertiary igneous complex of Lundy. In The Geology of Devon (E. M., , Durrance, M. and Laming, D. J. C., eds.). Univ. Exeter, pp. 238-48.Google Scholar
Davison, E. H. (1932) The age of the Lundy Island granite. Geol. Mag. 69, 76-7.CrossRefGoogle Scholar
Deer, W. A. (1937) The composition and paragenesis of the biotites of the Carsphairn igneous complex. Mineral. Mag. 24, 495-502.Google Scholar
Dewey, J. F. and Windley, B. F. (1988) Palaeocene-Oligocene tectonics of NW Europe. In Early Tertiary Volcanism and the Opening of the NE Atlantic (Morton, A. C. and Parsons, L. M., eds.. Geol. Soc. London Spec. Publ. 39, 25-31.Google Scholar
Dodson, M. H. and Long, L. E. (1962) Age of Lundy granite, Bristol Channel. Nature Phys. Sci. 195, 975-6.CrossRefGoogle Scholar
Dollar, A. T. J. (1941) The Lundy complex: its petrology and tectonics. Q. J. Geol. Soc. London, 97, 39-77.CrossRefGoogle Scholar
Edmonds, E. A., Williams, B. J. and Taylor, R. T. (1979) Geology of Bideford and Lundy Island. Mem. Geol. Surv. Gt Brit. Google Scholar
Emeleus, C. H. (1982) The central complexes. In Igneous Rocks of the British Isles (Sutherland, D. S., ed.). J. Wiley & Sons, pp. 369414.Google Scholar
Evensen, N. M., Hamilton, P. J. and O'Nions, R. K. (1978) Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 119-212.CrossRefGoogle Scholar
Exley, C.S., and Stone, M. (1982) Hercynian intrusive rocks. In Igneous Rocks of the British Isles (Sutherland, D. S., ed.). J. Wiley & Sons, pp. 287320.Google Scholar
Fitch, F. J., Miller, J. A. and Mitchell, J. G. (1969) A new approach to radiometric dating in orogenic belts. In Time and Place in Orogeny (Kent, P. E., Satterthwaite, G. E., and Spencer, A. M., eds.. Geol. Soc. London Spec. Publ. 3, 157-95.Google Scholar
Floyd, P. A. (1972) Geochemistry, origin and tectonic environment of the basic and acidic rocks of Cornubia, England. Proc. Geol. Assoc. 83, 385-404.CrossRefGoogle Scholar
Exley, C. S. and Stone, M. (1983) Variscan magmatism in SW England–discussion and synthesis. In The Variscan Fold Belt in the British Isles (Hancock, P. L., ed.). Adam Hilger Ltd., pp. 178-85.Google Scholar
Gromet, L. P. and Silver, L. T. (1983) Rare earth distribution among minerals in a granodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta, 47, 925-39.CrossRefGoogle Scholar
Hampton, C. M. and Taylor, P. M. (1983) The age and nature of the basement of southern Britain: evidence from Sr and Pb isotopes in granites. J. Geol. Soc. London 140, 499-509.CrossRefGoogle Scholar
Haslam, H. W. (1968) The crystallization of intermediate and acid magmas at Ben Nevis, Scotland. J. Petrol. 9, 84-104.CrossRefGoogle Scholar
Institute of Geological Sciences (1981) Annual Report for 1980 and 1981, p. 61.Google Scholar
Jefferies, N. J. (1985) The distribution of the rare-earth elements in the Carnmenellis pluton. Mineral. Mag. 49, 495-504.CrossRefGoogle Scholar
McLintock, W. F. P. and Hall, T. C. F. (1912) On topaz and beryl from the granite of Lundy Island. lbid. 16, 294-301.CrossRefGoogle Scholar
Meighan, I. G. (1979) The acid rocks of the British Tertiary Province. Bull. Geol. Surv. Gt Brit. 70, 10-22.Google Scholar
Meighan, I. G., Gibson, D. and Hood, D. N. (1984) Some aspects of Tertiary acid magmatism in NE Ireland. Mineral. Mag. 48, 351-63.CrossRefGoogle Scholar
Miller, C. F. and Mittlefehldt, D. W. (1982) Depletion of light rare-earth elements in felsic magmas. Geology, 10, 129-33.2.0.CO;2>CrossRefGoogle Scholar
Miller, J. A. and Fitch, F. J. (1962) Age of the Lundy granites. Nature Phys. Sci. 195, 5595.CrossRefGoogle Scholar
Mitchell, A. H. G. (1974) Southwest England granites: magmatism and tin minerallization in a post-collision tectonic setting. Trans. Inst. Min. Metall. 83, B957.Google Scholar
Mittlefehldt, D. W. and Miller, C. A. (1983) Geochemistry of the Sweetwater Wash pluton, California: implications for ‘anomalous’ trace element behaviour during differentiation of felsic magmas. Geochim. Cosmochim. Acta, 47, 10-24.CrossRefGoogle Scholar
Mussett, A. E., Dagley, P. and Skelhorn, R. R. (1988) Time and duration of activity in the British Tertiary igneous province. In Early Tertiary Volcanism and the Opening of the NE Atlantic (Morton, A. C., and Parsons, L. M., eds.). Geol. Soc. London Spec. Publ. 39, 337-48.Google Scholar
Pankhurst, R. J. (1979) Isotope and trace element evidence for the origin and evolution of Caledonian granites in the Scottish Highlands. In Origin of Granite Batholiths Geochemical Evidence (Atherton, M. P., and Tarney, J., eds.). Shiva, 1833.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956-83.CrossRefGoogle Scholar
Pitcher, W. S. (1987) Granites and yet more granites forty years on. Geol. Rundsch. Bd. 76, 51-79.Google Scholar
Shelley, D. (1966) The significance of granophyric and myrmekitic textures in the Lundy granites. Mineral. Mag. 35, 678-92.Google Scholar
Stone, M. (1987) Geochemistry and origin of the Carnmenellis pluton, Cornwall: further considerations. Proc. Ussher Soc. 6, 454-60.Google Scholar
Stone, M. (1988) The significance of almandine garnets in the Lundy and Dartmoor granites. Mineral. Mag. 52, 651-8.CrossRefGoogle Scholar
Stone, M. and Exley, C. S. (1989) Geochemistry of the Isles of Scilly pluton. Proc. Ussher Soc. 7, 152-7.Google Scholar
Stone, M. and George, M. C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag. 52, 175-92.CrossRefGoogle Scholar
Taylor, S. R. (1964) Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 28, 1273-85.CrossRefGoogle Scholar
Thompson, R. N. (1969) Tertiary granites and associated rocks of the Marsco area, Isle of Skye. Quart. J. Geol. Soc. London 124, 349-85.CrossRefGoogle Scholar
Thompson, R. N. (1982) Magmatism of the British Tertiary volcanic province. Scott. J. Geol. 18, 49-107.CrossRefGoogle Scholar
Thorpe, R. S. (1978) The parental basaltic magma of granites from the Isle of Skye, NW Scotland. Mineral. Mag. 42, 157-8.CrossRefGoogle Scholar
Thorpe, R. S., Potts, P. J. and Saire, M. B. (1977) Rare earth evidence concerning the origin of granites of the Isle of Skye, northwest Scotland. Earth Planet. Sci. Lett. 36, 111-20.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2*-H2O. Geol. Soc. Arner. Mem. 74, 153 pp.Google Scholar
Walsh, J. N., Beckinsale, R. D., Skelhorn, R. R. and Thorpe, R. S. (1979) Geochemistry and petrogenesis of Tertiary granitic rocks from the Island of Mull, Northwest Scotland. Contrib. Mineral. Petrol. 71, 99-116.CrossRefGoogle Scholar
Walsh, J. N. and Clarke, E. (1982) The role of fractional crystallization in the formation of granitic and intermediate rocks of the Beinn Chaisgidle centre, Mull, Scotland. Mineral. Mag. 45, 247-55.CrossRefGoogle Scholar
White, A. J. R. and Chappell, B. W. (1988) Some supracrustal (S-type) granites of the Lachlan fold belt. Trans. Roy. Soc. Edinb. Earth Sci. 79, 169-81.Google Scholar
White, A. J. R., Clemens, J. D., Holloway, J. R., Silver, L. T., Chappell, B. W. and Wall, V. J. (1986) S-type granites and their probable absence in southwestern North America. Geology, 14, 115-8.2.0.CO;2>CrossRefGoogle Scholar
Wickham, S. M. (1987) The segregation and emplacement of granitic magmas. J. Geol. Soc. London, 144, 281-97.CrossRefGoogle Scholar
Wood, D. A., Tarney, J., Varet, J., Saunders, A. D., Bougault, H., Joron, J. L., Treuil, M. and Cann, J. R. (1979) Geochemistry of basalts in the North Atlantic by IPOD LEG49: implications for mantle heterogeneity. Earth Planet. Sci. Lett. 42, 77-97.CrossRefGoogle Scholar
Zen, E-an (1986) Aluminium enrichment in silicic melts by fractional crystallization: some mineralogic and petrographic constraints. J. Petrol. 21, 1095-117.CrossRefGoogle Scholar