Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:20:47.711Z Has data issue: false hasContentIssue false

Hrabákite, Ni9PbSbS8, a new member of the hauchecornite group from Příbram, Czech Republic

Published online by Cambridge University Press:  14 January 2021

Jiří Sejkora*
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic
Pavel Škácha
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic Mining Museum Příbram, Hynka Kličky place 293, Příbram VI, 261 01, Czech Republic
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic
Jana Ulmanová
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic
*
*Author for correspondence: Jiří Sejkora, Email: [email protected]

Abstract

The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (RminRmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Anderson, E.B. (1987) Isotopic-Geochronological Investigation of the Uranium Mineralization of Czechoslovakia. Unpublished Czechoslovak Uranium Industry Report 1962-87.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471485.CrossRefGoogle Scholar
Criddle, A.J. and Stanley, C.J. (1993) Quantitative Data File for Ore Minerals. Third edition. Chapman & Hall, London.CrossRefGoogle Scholar
Ettler, V., Sejkora, J., Drahota, P., Litochleb, J., Pauliš, P., Zeman, J., Novák, M. and Pašava, J. (2010) Příbram and Kutná Hora mining districts – from historical mining to recent environmental impact. Acta Mineralogica-Petrographica, Field Guide Series, 7. IMA 2010 Field Trip Guide. Budapest, pp 1–23.Google Scholar
Gait, R.I. and Harris, D.C. (1980) Arsenohauchecornite and tellurohauchecornite: new minerals in the hauchecornite group. Mineralogical Magazine, 43, 877888.CrossRefGoogle Scholar
Grice, J.D. and Ferguson, R.B. (1989) The crystal structure of arsenohauchecornite. The Canadian Mineralogist, 27, 137142.Google Scholar
Janoušek, V., Wiegand, B.A. and Žák, J. (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. Journal of the Geological Society, 167, 347360.CrossRefGoogle Scholar
Just, J. (1980) Bismutohauchecornite – new name: hauchecornite redefined. Mineralogical Magazine, 43, 873876.CrossRefGoogle Scholar
Just, J. and Feather, C.E. (1978) Tučekite, a new antimony analogue of hauchecornite. Mineralogical Magazine, 42, 278278.CrossRefGoogle Scholar
Kocman, V. and Nuffield, E.W. (1974) The crystal structure of antimonian hauchecornite from Westphalia. The Canadian Mineralogist, 12, 269274.Google Scholar
Komínek, J. (1995) Geology of the Příbram district and its broader surroundings. Final report of the Příbram district, 2 nd part. Unpublished manuscript, DIAMO State Enterprise.Google Scholar
Kovalenker, V.A., Evstigneeva, T.L., Begizov, V.D., Vyal´sov, L.N., Smirnov, A.V., Krakovetskii, Y.K. and Balbin, V.S. (1978) Hauchecornite from copper-nickel ores of the Oktyabr´skoe deposit. Trudy Mineralogicheskogo Muzeya Fersman Akademiya Nauk SSSR, 26, 201–205 [in Russian].Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Litochleb, J., Černý, P., Litochlebová, E., Sejkora, J. and Šreinová, B. (2003) The deposits and occurrences of mineral raw materials in the Střední Brdy Mts. and the Brdy piedmont area (Central Bohemia). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 11, 5786 [in Czech with English abstract].Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Picot, P. and Johan, Z. (1982) Atlas of Ore Minerals. B.R.G.M., Elsevier.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (πρZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editors). San Francisco Press, California.Google Scholar
Rigaku (2019) CrysAlis CCD and CrysAlis RED. Rigaku-Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Sheldrick, G.M. (2015) SHELXT – integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38Google Scholar
Sejkora, J., Škácha, P., Laufek, F. and Plášil, J. (2017) Brodtkorbite, Cu2HgSe2, from Příbram, Czech Republic: crystal structure and description. European Journal of Mineralogy, 29, 663672.CrossRefGoogle Scholar
Sejkora, J., Škácha, P. and Dolníček, Z. (2019) Ag–Bi–Hg mineralization from the deposit Brod, uranium and base-metal ore district Příbram (Czech Republic). Bulletin Mineralogie Petrologie, 27, 259268 [in Czech with English abstract].Google Scholar
Sejkora, J., Škácha, P., Plášil, J., Dolníček, Z. and Ulmanová, J. (2020) Hrabákite, IMA 2020-034. CNMNC Newsletter No. 57; Mineralogical Magazine, 84, 791–794, https://doi.org/10.1180/mgm.2020.73Google Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2017a) Příbramite, CuSbSe2, the Se-analogue of chalcostibite, a new mineral from Příbram, Czech Republic. European Journal of Mineralogy, 29, 653661.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2017b) Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic). Minerals, 7, 91.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2018) Bytízite, a new Cu-Sb selenide from Příbram, Czech Republic. Mineralogical Magazine, 82, 199209.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Dolníček, Z. (2019) Cu–Ag–Sb–As mineralization from the Milín deposit, uranium and base-metal ore district Příbram (Czech Republic). Bulletin Mineralogie Petrologie, 27, 419426 [in Czech with English abstract].Google Scholar
Škácha, P., Sejkora, J., Plášil, J. and Makovicky, E. (2020) Pošepnýite, a new Hg-rich member of the tetrahedrite group from Příbram, Czech Republic. Journal of Geosciences, 65, 173186.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on new minerals, nomenclature and classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Trantina, V. (2003) Professor Josef Hrabák, the member of Czech tourist club. Mining Příbram in science and technology symposium. Lecture abstract. Available online at: https://slon.diamo.cz/hpvt/2003/sekce_t/T09%20Trantina.htmGoogle Scholar
Zaccarini, F., Bindi, L., Tsikouras, B., Grammatikopoulos, T., Stanley, C.J. and Garuti, G. (2020) Arsenotučekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece. Mineralogy and Petrology, 114, 435442.CrossRefGoogle Scholar
Žák, K. and Dobeš, P. (1991) Stable isotopes and fluid inclusions in hydrothermal deposits: the Příbram ore region. Rozpravy Československé akademie věd, Řada matematických a přírodních věd, 101, 1109.Google Scholar
Supplementary material: File

Sejkora et al. supplementary material

Sejkora et al. supplementary material

Download Sejkora et al. supplementary material(File)
File 145.8 KB