Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:28:05.491Z Has data issue: false hasContentIssue false

Eleonorite, Fe63+(PO4)4O(OH)4·6H2O: validation as a mineral species and new data

Published online by Cambridge University Press:  02 January 2018

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
Sergey M. Aksenov
Affiliation:
Faculty of Geology, St Petersburg State University, University Embankment 7/9, St Petersburg, 199034 Russia Institute of Crystallography, Russian Academy of Sciences, 59 Lenin Avenue, Moscow, 117333 Russia
Ramiza K. Rastsvetaeva
Affiliation:
Institute of Crystallography, Russian Academy of Sciences, 59 Lenin Avenue, Moscow, 117333 Russia
Christof Schäfer
Affiliation:
Südwestdeutsche Salzwerke AG, Salzgrund 67, 74076 Heilbronn, Germany
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Dmitriy I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 8-2, Moscow, 117071 Russia
Ricardo Scholz
Affiliation:
Universidade Federal de Ouro Preto (UFOP), Escola de Minas, Departamento de Geologia, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil
Luiz C.A. de Oliveira
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
Sergey N. Britvin
Affiliation:
Institute of Crystallography, Russian Academy of Sciences, 59 Lenin Avenue, Moscow, 117333 Russia
*

Abstract

Eleonorite, ideally Fe63+(PO4)4O(OH)4·6H2O, the analogue of beraunite Fe2+Fe53+(PO4)4O(OH)5·6H2O with Fe2+ completely substituted by Fe3+, has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification as a mineral species (IMA 2015-003). The mineral was first described on material from the Eleonore Iron mine, Dünsberg, near Giessen, Hesse, Germany, but during this study further samples were required and a neotype locality is the Rotläufchen mine, Waldgirmes, Wetzlar, Hesse, Germany, where eleonorite is associated with goethite, rockbridgeite, dufrénite, kidwellite, variscite, matulaite, planerite, cacoxenite, strengite and wavellite. Usually eleonorite occurs as red-brown prismatic crystals up to 0.2 mm × 0.5 mm × 3.5 mm in size and in random or radial aggregates up to 5 mm across encrusting cavities in massive 'limonite'. The mineral is brittle. Its Mohs hardness is 3. Dmeas = 2.92(1), Dcalc = 2.931 g cm–3. The IR spectrum is given. Eleonorite is optically biaxial (+), α = 1.765(4), β = 1.780(5), γ = 1.812(6), 2Vmeas = 75(10)°, 2Vcalc = 70°. The chemical composition (electron microprobe data, H2O analysed by chromatography of products of ignition at 1200°C, wt.%) is: Al2O3 1.03, Mn2O3 0.82, Fe2O3 51.34, P2O5 31.06, H2O 16.4, total 99.58. All iron was determined as being trivalent from a Mössbauer analysis. The empirical formula (based on 27 O apfu) is (Fe5.763+Al0.18Mn0.093+)∑6.03(PO4)3.92O(OH)4.34·5.98H2O. The crystal structure (R = 0.0633) is similar to that of beraunite and is based on a heteropolyhedral framework formed by M(1–4)Ø6-octahedra (where M = Fe3+; Ø = O2–, OH or H2O) and isolated PO4 tetrahedra, with a wide channel occupied by H2O molecules. Eleonorite is monoclinic, space group C2/c, a = 20.679(10), b = 5.148(2), c = 19.223(9) Å, β = 93.574(9)°, V = 2042.5(16) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (Hkl)] are 10.41 (100) (200), 9.67 (38) (002), 7.30 (29) (202̄), 4.816 (31) (111, 004), 3.432 (18) (600, 114, 404, 313), 3.197 (18) (510, 511̄, 006, 314̄, 602), 3.071 (34) (314, 115̄).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, H. (1986) Crystal structure of FePO4 at 294 and 20 K. Zeitschrift für Kristallographie, 177, 139142.CrossRefGoogle Scholar
Blanchard, F.N. and Denahan, S.A. (1968) Cacoxenite and beraunite from Florida. American Mineralogist, 53, 20962101.Google Scholar
Brandenburg, K. (1999) DIAMOND, version 2.1c. Crystal Impact GbR, Bonn, Germany.Google Scholar
Breithaupt, A. (1841) Vollständiges Handbuch der Mineralogie. Volume 2. Arnoldische Buchhandlung, Dresden and Leipzig, Germany.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond strength — bond lengths curves for oxides. Acta Crystallographica, A29, 266282.CrossRefGoogle Scholar
Bruker (2009) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht, The Netherlands.Google Scholar
Chukanov, N.V., Scholz, R., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I., Krambrock, K., Paniago, R.M., Righi, A., Martins, R. F, Belotti, F.M. and Bermanec, Y (2012) Metavivianite, Fe2+Fe-+(PO4)2(OH)2-6H2O: new data and formula revision. Mineralogical Magazine, 76, 725741.CrossRefGoogle Scholar
Cipriani, C., Mellini, M., Pratesi, G. and Viti, C. (1997) Rodolicoite and grattarolaite, two new phosphate minerals from Santa Barbara mine, Italy. European Journal of Mineralogy, 9, 11011106.CrossRefGoogle Scholar
Eventoff, W., Martin, R. and Peacor, D.R. (1972) The crystal structure of heterosite. American Mineralogist, 57, 4551.Google Scholar
Fanfani, L. and Zanazzi, P.F. (1967) The crystal structure of beraunite. Acta Crystallographica, 22, 173181.CrossRefGoogle Scholar
Frondel, C. (1949) The dufrenite problem. American Mineralogist, 34, 513540.Google Scholar
Frost, R.L., Weier, M.L. and Lyon, W. (2004) Metavivianite, an intermediate mineral phase between vivianite, and ferro/ferristrunzite. A Raman spectroscopic study. Neues Jahrbuch für Mineralogie, Monatshefte, 2004, 228240.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography. The Kynoch Press. Birmingham, UK.Google Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Housley, R. M, Rossman, G.R. and Dini, M. (2013) Camaronesite, Fe3+(H2O)2(PO3OH))2(SO4)-l-2 (H2O), a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineralogical Magazine, 77, 453–65.CrossRefGoogle Scholar
Kolitsch, U., Bernhardt, H.J., Lengauer, C.L., Blass, G. and Tillmanns, E. (2006) Allanpringite, Fe3(PO4)2(OH)3-5(H2O), a new ferrric iron phosphate from Germany, and its close relation to wavellite. European Journal of Mineralogy, 18, 793801.CrossRefGoogle Scholar
Marzoni Fecia di Cossato, Y., Orlandi, P. and Pasero, M. (1989) Manganese-bearing beraunite from Mangualde, Portugal: mineral data and structure refinement. The Canadian Mineralogist, 27, 441–46.Google Scholar
Modaressi, A., Courtois, A., Gérardin, R., Malaman, B. and Gleitzer, C. (1983) Fe3PO7, un cas de coordinence 5 du fer trivalent, étude structurale et magnétique. Journal of Solid State Chemistry, 47, 245255.CrossRefGoogle Scholar
Moore, P.B. (1966) The crystal structure of metastrengite and its relationship to strengite and phosphophyllite. American Mineralogist, 51, 168176.Google Scholar
Moore, P.B. (1969) The basic ferric phosphates: a crystallochemical principle. Science, 164, 10631064.CrossRefGoogle ScholarPubMed
Moore, P.B. (1970) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135169.Google Scholar
Moore, P.B. and Araki, T (1976) A mixed-valence solid-solution series’ crystal structures of phosphofer-rite, Fe3(II)(H2O)3(PO4)2, and kryshanovskite, Fe( III)3(OH)3(PO4)2 . Inorganic Chemistry, 15, 316321.CrossRefGoogle Scholar
Moore, P.B. and Kampf, A.R. (1992) Beraunite: refinement, comparative crystal chemistry, and selected bond valences. Zeitschriftfür Kristallographie, 201, 263281.Google Scholar
Moore, P.B., Araki, T and Kampf, A.R. (1980) Nomenclature of the phosphoferrite structure type: refinements of landsite and kryzhanovskite. Mineralogical Magazine, 43, 789795.CrossRefGoogle Scholar
Nies, A. (1877) Strengit, ein neues Mineral. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 816.Google Scholar
Nies, A. (1880) Vorläufiger Bericht über zwei neue Mineralien von der Grube Eleonore am Dünsberg bei Gießen. Berichte der Oberhessischen Gesellschaftfür Natur- und Heilkunde, 19, 111113.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Volume II. John Wiley and Sons, New York.Google Scholar
Peacor, D.R., Dunn, PI, Simmons, W.B. andRamik, R.A. (1987) Ferristrunzite, a new member of the strunzite group, from Blaton, Belgium. Neues Jahrbuch für Mineralogie, Monatshefte, 433-440.Google Scholar
Peacor, D.R., Rouse, R.C., Coskren, T.D. and Essene, E.J. (1999) Destinezite (‘diadochite’), Fe2(PO4)(SO4) (OH)-6H2O: its crystal structure and role as a soil mineral at Alum Cave Bluff, Tennessee. Clays and Clay Minerals, 47, 111.CrossRefGoogle Scholar
Petficek, V., Dusek, M. and Palatinus, L. (2006) Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.Google Scholar
Pratesi, G., Cipriani, C., Giuli, G. and Birch, W.D. (2003) Santabarbaraite: a new amorphous phosphate mineral. European Journal of Mineralogy, 15, 185192.CrossRefGoogle Scholar
Rius, J., Louer, D., Louer, M., Gali, S. and Melgarejo, J.C. (2000) Structure solution from powder data of the phosphate hydrate tinticite. European Journal of Mineralogy, 12, 581588.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Sakurai, K., Matsubara, S. and Kato, A. (1987) Koninckite from the Suwa mine, Chino City, Nagano Prefecture, Japan. Bulletin of the National Science Museum Tokyo, Series C, 13, 149156.Google Scholar
Schmid-Beurmann, P., Ottolini, L., Hatert, F., Geisler, T., Huyskens, M. and Kahl, V (2012) Topotactic formation of ferrisicklerite from natural triphylite under hydrothermal conditions. Mineralogy and Petrology, 107, 501515.CrossRefGoogle Scholar
Scholz, R., Karfunkel, J., Bermanec, V., Da Costa, G.-M., Horn, A.-H., Cruz Souza, L.-A. and Bilal, E. (2008) Amblygonite-montebrasite from Divino das Laranjeiras - Mendes Pimentel pegmatitic swarm, Minas Gerais Brasil. II. Mineralogy. Romanian Journal of Mineral Deposits, 83, 131147.Google Scholar
Sejkora, J., Škoda, R., Ondruš, P., Beran, P. and Süsser, C. (2006) Mineralogy of phosphate accumulations in the Huber stock, Krásno ore district, Slavkovský Les area, Czech Republic. Journal of the Czech Geological Society, 51/(12), 103147.Google Scholar
Sejkora, J., Grey, I.E., Kampf, A.R. and Price, J.R. (2015) Tvrdýite, IMA 2014-082. CNMNC Newsletter No. 23, February 2015, page 57; Mineralogical Magazine, 79, 5158.Google Scholar
Sejkora, J., Grey, I.E., Kampf, A.R., Price, J.R. and Čejka, J. (2016) Tvrdýite, Fe2+Fe32þ A13(PO4)4(OH)5(OH2)4-2H2O, a new phosphate mineral from Krásno near Horný Slavkov, Czech Republic. Mineralogical Magazine, 80, 10771088.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A64, 751767.CrossRefGoogle Scholar
Streng, A. (1881) Ueber die Phosphate von Waldgirmes. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 101-119.Google Scholar
Taxer, K. and Bartl, H. (2004) On the dimorphy between the variscite and clinovariscite group: refined fines-tructural relationship of strengite and clinostrengite, Fe (PO4)-2H2O. Crystal Research and Technology, 39, 10801088.CrossRefGoogle Scholar