Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T10:57:12.405Z Has data issue: false hasContentIssue false

The crystal structure of the new mineral dyrnaesite-(La),Na8CeIVREE2(PO4)6

Published online by Cambridge University Press:  02 January 2018

Tonči Balić-Žunić*
Affiliation:
Natural History Museum, University of Copenhagen
*

Abstract

Dyrnaesite-(La), Na7.89(Ce0.94Ca0.06)∑1.00(La1.14Ce0.40Pr0.10Nd0.24Ca0.12)∑2.00(PO4)6 is orthorhombic, Pnma, a = 18.4662(7), b= 16.0106(5), c = 7.0274(2) Å, V = 2077.7(1) Å3, Z = 4. The crystal structure is related to the group of Na3REE(XO4)2 compounds (with X = P, V, As), based on the aphthitalite/glaserite structural type. Dyrnaesite is distinct in having ordered Na vacancies, and a rare-earth element (REE) site occupied preferentially by Ce4+. This also distinguishes it from closely related vitusite-(Ce) [Na3REE(PO4)2]. The relation of their unit cells is: ad= bv, bd = 3av, cd = 1/2 cv. The distinct Ce4+ site in dyrnaesite-(La) has smaller coordination with shorter bond lengths than the other REE site in the same structure or the REE sites in vitusite-(Ce). It is adjacent to the predominately vacant Na site, which in its turn has the largest coordination of all Na sites in the structure. REE sites, or Na sites in a [010] row (similar to [100] in vitusite(Ce)) assume two types of coordinations with and without mirror symmetry and two different configurations of surrounding PO4 tetrahedra. This summarizes the topological difference to vitusite-(Ce) where the corresponding coordinations are similar in the same row and intermediate in character to the two types in dyrnaesite-(La).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, H., Kurtz, W., Richter-Zinnius, A. and Bethke, J. (1981) The phase transition of K2SO4 at about 850 K. Acta Crystallographica, B37, 16431651.CrossRefGoogle Scholar
Balic-Zunic, T. (2007) Use of three-dimensional para-meters in the analysis of crystal structures under compression. Pp. 157184 in: Pressure-Induced Phase Transitions 2007 (A. Grzechnik, editor). Transworld Research Network, Trivandrum, India. ISBN: 81-7895-272-6.Google Scholar
Balic-Zunic, T. and Makovicky, E. (1996) Determination of the Centroid or “the Best Centre” of a Coordination Polyhedron. Acta crystallographica, B52, 7881.CrossRefGoogle Scholar
Balic-Zunic, T. and Vickovic, I. (1996) IVTON - program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306.CrossRefGoogle Scholar
Eysel, W., Höfer, H.H., Keester, K.L. and Hahn, Th. (1985) Crystal chemistry and structure of Na2SO4(I) and its solid solutions. Acta Crystallographica, B41, 511.CrossRefGoogle Scholar
Mazzi, F. and Ungaretti, L. (1994) The crystal structure of vitusite from Ilímaussaq (South Greenland): Na3REE (PO4)2. Neues Jahrbuchfür Mineralogie Monatshefte, 1994/2, 49-66.Google Scholar
Miyake, M., Morikawa, H. and Iwai, S. (1980) Structure reinvestigation of the high-temperature form of K2SO4 . Acta Crystallographica, B36, 532536.CrossRefGoogle Scholar
Okada, K. and Ossaka, J. (1980) Structures of potassium sodium sulphate and tripotassium sodium disulphate. Acta Crystallographica, B36, 919921.CrossRefGoogle Scholar
O'Keeffe, M. (1977) On the arrangement of ions in crystals. Acta Crystallographica, A33, 924927.CrossRefGoogle Scholar
O'Keeffe, M. and Andersson, S. (1977) Rod packings and crystal chemistry. Acta Crystallographica, A33, 914923.CrossRefGoogle Scholar
Petricek, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Rønsbo, J.G., Khomyakov, A.P., Semenov, E.I., Voronkov, A.A. and Garanin, YK (1979) Vitusite -a new phosphate of sodium and rare earths from the Lovozero alkaline massif, Kola, and the Ilímaussaq alkaline intrusion, South Greenland. Neues Jahrbuch für Mineralogie, Abhandlungen, 137/1, 4253.Google Scholar
Rønsbo, J.G., Balic-Zunic, T. and Petersen, O.V. (2017) Dyrnaesite-(La) a new hyperagpaitic mineral from the Ilímaussaq alkaline complex, South Greenland. Mineralogical Magazine, 81, 103111.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Vlasse, M., Salmon, R. and Parent, C. (1976) Crystal structure of sodium lanthanum orthovanadate, Na3La (VO4)2 . Inorganic Chemistry, 15(6) 14401444.CrossRefGoogle Scholar
Vlasse, M., Parent, C., Salmon, R., Le Flem, G. and Hagenmuller, P. (1980) The structures of the Na3Ln (XO4)2 phases (Ln = rare earth, X= P, V, As). Journal of Solid State Chemistry, 35, 318324.CrossRefGoogle Scholar
Supplementary material: File

Balić-Žunić supplementary material

cif with observed and calculated structure factors

Download Balić-Žunić supplementary material(File)
File 235.9 KB