Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:13:34.711Z Has data issue: false hasContentIssue false

Crystal chemistry of ivanyukite-group minerals, A3–xH1+x[Ti4O4(SiO4)3](H2O)n (A = Na, K, Cu), (n = 6–9, x = 0–2): crystal structures, ion-exchange, chemical evolution

Published online by Cambridge University Press:  07 June 2021

Taras L. Panikorovskii*
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity184200, Russia Department of Crystallography, St. Petersburg State University, 7–9 University Emb, St. Petersburg199034, Russia
Victor N. Yakovenchuk
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity184200, Russia
Nataliya Yu. Yanicheva
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity184200, Russia
Yakov A. Pakhomovsky
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity184200, Russia
Vladimir V. Shilovskikh
Affiliation:
Geo Environmental Centre “Geomodel”, St. Petersburg State University, Ul'yanovskaya Str., St. Petersburg198504, Russia
Vladimir N. Bocharov
Affiliation:
Geo Environmental Centre “Geomodel”, St. Petersburg State University, Ul'yanovskaya Str., St. Petersburg198504, Russia
Sergey V. Krivovichev
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity184200, Russia Department of Crystallography, St. Petersburg State University, 7–9 University Emb, St. Petersburg199034, Russia
*
*Author for correspondence: Taras L. Panikorovskii, Email: [email protected]

Abstract

Microporous slicates with the pharmacosiderite structure and the general formula A3–xH1+x[Ti4O4(SiO4)3](H2O)n (A = Na, K, Cu), (n = 6–9, x = 0–2) are outstanding in their ion-exchange properties. The ivanyukite mineral group consists of three species, one of which has two polymorphs. The minerals forming a progressive series: ivanyukite-Na-T → ivanyukite-Na-C → ivanyukite-K → Cu-rich ivanyukite-K → ivanyukite-Cu, have been studied by single-crystal X-ray diffraction, electron microprobe analysis and Raman spectroscopy. The microporous heteropolyhedral framework of the ivanyukite-group minerals is based on cubane-like [Ti4O4]8+ clusters that share common corners with SiO4 tetrahedra to form wide three-dimensional channels suitable for the migration of Na+, K+ and Cu2+ ions. Ivanyukite-Na-T that has a R3m symmetry loses Na+ in aqueous solutions via the substitution Na+ + O2‒ ↔ □ + OH, which allows for the migration of K+ ions and transformation of initial structure into the cubic (P$\bar{4}3m$) ivanyukite-Na-C polymorph or into ivanyukite-K, when most of Na is lost. Natural ivanyukite-Na-C is shown to contain domains of both R3m (subordinate) and P$\bar{4}3m$ (dominant) symmetry with the chemical composition determining the stability and dominance of cubic or trigonal forms. Incorporation of Cu into the crystal structure ivanyukite-K via the substitution K+ + OH ↔ Cu2+ + O2− in aqueous solutions results in the formation of ivanyukite-Cu. Post-crystallisation processes (such as exchange of Na+, K+, Cu2+, and/or hydration/dehydration of primary phases) are widespread in hyperagpaitic rocks of the Kola alkaline massif and the respective mineral transformations contribute to the diversity of mineral species.

Type
Article – Gregory Yu. Ivanyuk memorial issue
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is part of a thematic set ‘Alkaline Rocks’ in memory of Dr Gregory Yu. Ivanyuk

Associate Editor: Elena Zhitova

References

Agilent Technologies. (2014) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Anderson, M.W., Terasaki, O., Ohsuna, T., Malley, P.J.O., Philippou, A., Mackay, S.P., Ferreira, A., Rocha, J. and Lidin, S. (1995) Microporous titanosilicate ETS-10: A structural survey. Philosophical Magazine B, 71, 813841.CrossRefGoogle Scholar
Anson, A., Lin, C.C.H., Kuznicki, S.M. and Sawada, J.A. (2009) Adsorption of carbon dioxide, ethane, and methane on titanosilicate type molecular sieves. Chemical Engineering Science, 64, 36833687.CrossRefGoogle Scholar
Behrens, E.A. and Clearfield, A. (1997) Titanium silicates, M3HTi4O4(SiO4)3⋅4H2O (M = Na+, K+),with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions. Microporous Materials, 11, 6575.CrossRefGoogle Scholar
Behrens, E.A., Poojary, D.M. and Clearfield, A. (1996) Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM3Ti4O4(SiO4)3⋅4H2O (M = H+, K+, Cs+), structural analogues of the mineral pharmacosiderite. Chemistry of Materials, 8, 12361244.CrossRefGoogle Scholar
Behrens, E.A., Sylvester, P. and Clearfield, A. (1998a) Assessment of a sodium nonatitanate and pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE waste simulants. Environmental Science & Technology, 32, 101107.CrossRefGoogle Scholar
Behrens, E.A., Poojary, D.M. and Clearfield, A. (1998b) syntheses, x-ray powder structures, and preliminary ion-exchange properties of germanium-substituted titanosilicate pharmacosiderites: HM3(AO)4(BO4)3⋅4H2O (M = K, Rb, Cs; A = Ti, Ge; B = Si, Ge). Chemistry of Materials, 10, 959967.CrossRefGoogle Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S.J. (2019) On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.CrossRefGoogle Scholar
Britvin, S.N., Gerasimova, L.G., Ivanyuk, G.Y., Kalashnikova, G.O., Krzhizhanovskaya, M.G., Krivovivhev, S.V., Mararitsa, V.F., Nikolaev, A.I., Oginova, O.A., Panteleev, V.N., Khandobin, V.A., Yakovenchuk, V.N. and Yanicheva, N.Y. (2016) Application of titanium-containing sorbents for treating liquid radioactive waste with the subsequent conservation of radionuclides in Synroc-type titanate ceramics. Theoretical Foundations of Chemical Engineering, 50, 598606.CrossRefGoogle Scholar
Celestian, A.J., Powers, M. and Rader, S. (2013) In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite. American Mineralogist, 98, 11531161.CrossRefGoogle Scholar
Chapman, D.M. and Roe, A.L. (1990) Synthesis, characterization and crystal chemistry of microporous titanium-silicate materials. Zeolites, 10, 730737.CrossRefGoogle Scholar
Chukanov, N.V. and Pekov, I.V. (2005) Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects. Pp. 105143 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Clearfield, A. (2001) Structure and ion exchange properties of tunnel type titanium silicates. Solid State Sciences, 3, 103112.CrossRefGoogle Scholar
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E. and Vezzalini, G. (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 62, 533571.CrossRefGoogle Scholar
Dadachov, M.S. and Harrison, W.T.A. (1997) Synthesis and crystal structure of Na4[(TiO)4(SiO4)3]⋅6H2O, a rhombohedrally distorted sodium titanium silicate pharmacosiderite analogue. Journal of Solid State Chemistry, 134, 409415.CrossRefGoogle Scholar
Filippi, M. (2004) Oxidation of the arsenic-rich concentrate at the Přebuz abandoned mine (Erzgebirge Mts., CZ): mineralogical evolution. Science of The Total Environment, 322, 271282.CrossRefGoogle Scholar
Filippi, M., Doušová, B. and Machovič, V. (2007) Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma, 139, 154170.CrossRefGoogle Scholar
Frost, R.L. and Kloprogge, J.T. (2003) Raman spectroscopy of some complex arsenate minerals—implications for soil remediation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 27972804.CrossRefGoogle ScholarPubMed
Gerasimova, L.G., Nikolaev, A.I., Shchukina, E.S., Maslova, M.V., Kalashnikova, G.O., Samburov, G.O. and Ivanyuk, G.Y. (2019) Hydrochloric acidic processing of titanite ore to produce a synthetic analogue of korobitsynite. Minerals, 9, 315.CrossRefGoogle Scholar
Hager, S.L., Leverett, P., Williams, P.A., Mills, S.J., Hibbs, D.E., Raudsepp, M., Kampf, A.R. and Birch, W.D. (2010) The single-crystal X-ray structures of bariopharmacosiderite-C, bariopharmacosiderite-Q and natropharmacosiderite. The Canadian Mineralogist, 48, 14771485.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Kabanova, N.A., Panikorovskii, T.L., Shilovskikh, V.V., Vlasenko, N.S., Yakovenchuk, V.N., Aksenov, S.M., Bocharov, V.N. and Krivovichev, S.V. (2020) The Na2−nHn[Zr(Si2O7)]⋅mH2O minerals and related compounds (n = 0–0.5; m = 0.1): structure refinement, framework topology, and possible Na+-ion migration paths. Crystals, 10, 1016.CrossRefGoogle Scholar
Khomyakov, A.P. (1977) New data on mineralogy of lovozerite group. Doklady Akademii Nauk SSSR, 237, 199202.Google Scholar
Khomyakov, A.P., Semenov, E.I., Es'kova, E.M. and Voronkov, A.A. (1974) Kazakovite – a new mineral of the lovozerite group. Zapiski RMO, 103, 342345.Google Scholar
Krivovichev, S. (2005) Topology of microporous structures. Pp. 1768 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography. De Gruyter, W., BerlinGoogle Scholar
Lin, C.C.H., Dambrowitz, K.A. and Kuznicki, S.M. (2012) Evolving applications of zeolite molecular sieves. The Canadian Journal of Chemical Engineering, 90, 207216.CrossRefGoogle Scholar
Majzlan, J., Haase, P., Plášil, J. and Dachs, E. (2019) Synthesis and stability of some members of the pharmacosiderite group, AFe4(OH)4(AsO4)3⋅nH2O (A = K, Na, 0.5Ba, 0.5Sr). The Canadian Mineralogist, 57, 663675.CrossRefGoogle Scholar
Milne, N.A., Griffith, C.S., Hanna, J.V., Skyllas-Kazacos, M. and Luca, V. (2006) Lithium Intercalation into the Titanosilicate Sitinakite. Chemistry of Materials, 18, 31923202.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Mineralogy and Petrology, 64, 237263.CrossRefGoogle Scholar
Nowotny, H. and Wittmann, A. (1954) Zeolithische Alkaligermanate. Monatshefte für Chemie, 85, 558574.CrossRefGoogle Scholar
Oleksiienko, O., Wolkersdorfer, C. and Sillanpää, M. (2017) Titanosilicates in cation adsorption and cation exchange – A review. Chemical Engineering Journal, 317, 570585.CrossRefGoogle Scholar
Pakhomovsky, Y.A., Panikorovskii, T.L., Yakovenchuk, V.N., Ivanyuk, G.Y., Mikhailova, J.A., Krivovichev, S. V., Bocharov, V.N. and Kalashnikov, A.O. (2018) Selivanovaite, NaTi3(Ti,Na,Fe,Mn)4[(Si2O7)2O4(OH,H2O)4]⋅nH2O, a new rock-forming mineral from the eudialyte-rich malignite of the Lovozero alkaline massif (Kola Peninsula, Russia). European Journal of Mineralogy, 30, 525535.CrossRefGoogle Scholar
Popa, K. and Pavel, C.C. (2012) Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination, 293, 7886.CrossRefGoogle Scholar
Rocha, J. and Anderson, M.W. (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. European Journal of Inorganic Chemistry, 2000, 801818.3.0.CO;2-E>CrossRefGoogle Scholar
Rumsey, M.S., Mills, S.J. and Spratt, J. (2010) Natropharmacoalumite, NaAl4[(OH)4(AsO4)3]⋅4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineralogical Magazine, 74, 929936.CrossRefGoogle Scholar
Seki, T., Chiang, K.-Y., Yu, C.-C., Yu, X., Okuno, M., Hunger, J., Nagata, Y. and Bonn, M. (2020) The bending mode of water: a powerful probe for hydrogen bond structure of aqueous systems. The Journal of Physical Chemistry Letters, 11, 84598469.CrossRefGoogle ScholarPubMed
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Spiridonova, D.V., Krivovichev, S.V., Yakovenchuk, V.N. and Pakhomovsky, Y.A. (2011) Crystal structures of the Rb- and Sr-exchanged forms of ivanyukite-Na-T. Geology of Ore Deposits, 53, 670677.CrossRefGoogle Scholar
Xu, H., Navrotsky, A., Nyman, M. and Nenoff, T.M. (2004) Crystal chemistry and energetics of pharmacosiderite-related microporous phases in the K2O–Cs2O–SiO2–TiO2–H2O system. Microporous and Mesoporous Materials, 72, 209218.CrossRefGoogle Scholar
Yakovenchuk, V.N., Selivanova, E.A., Ivanyuk, G.Y., Pakhomovsky, Y.A., Spiridonova, D.V. and Krivovichev, S. V. (2008) First natural pharmacosiderite-related titanosilicates and their ion-exchange properties. Pp. 2735 in: Minerals as Advanced Materials I. Springer Berlin-Heidelberg.CrossRefGoogle Scholar
Yakovenchuk, V.N., Nikolaev, A.P., Selivanova, E.A., Pakhomovsky, Y.A., Korchak, J.A., Spiridonova, D.V., Zalkind, O.A. and Krivovichev, S.V. (2009) Ivanyukite-Na-T, ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu: New microporous titanosilicates from the Khibiny massif (Kola Peninsula, Russia) and crystal structure of ivanyukite-Na-T. American Mineralogist, 94, 14501458.CrossRefGoogle Scholar
Yakovenchuk, V.N., Selivanova, E.A., Krivovichev, S.V., Pakhomovsky, Y.A., Spiridonova, D.V., Kasikov, A.G. and Ivanyuk, G.Y. (2011) Ivanyukite-group minerals: crystal structure and cation-exchange properties. Pp. 205211 in: Minerals as Advanced Materials II. Springer Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar
Yakovenchuk, V., Pakhomovsky, Y., Panikorovskii, T., Zolotarev, A., Mikhailova, J., Bocharov, V., Krivovichev, S. and Ivanyuk, G. (2019) Chirvinskyite, (Na,Ca)13(Fe,Mn,□)2(Ti,Nb)2(Zr,Ti)3(Si2O7)4(OH,O,F)12, a new mineral with a modular wallpaper structure, from the Khibiny Alkaline Massif (Kola Peninsula, Russia). Minerals, 9, 219.CrossRefGoogle Scholar
Supplementary material: File

Panikorovskii et al. supplementary material

Panikorovskii et al. supplementary material

Download Panikorovskii et al. supplementary material(File)
File 116.9 KB