Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T08:49:59.721Z Has data issue: false hasContentIssue false

Burbankite and pseudomorphs from the Main Intrusion calcite carbonatite, Lofdal, Namibia: association, mineral composition, Raman spectroscopy

Published online by Cambridge University Press:  01 July 2021

Maria A. Sitnikova*
Affiliation:
Federal Institute for Geosciences and Mineral Resources (BGR), Stilleweg, 2, 30655Hannover, Germany
Vicky Do Cabo
Affiliation:
Geological Survey of Namibia, 6 Aviation Road Private Bag 13297 Windhoek, Namibia
Frances Wall
Affiliation:
Camborne School of Mines, University of Exeter, CornwallTR10 9FE, UK
Simon Goldmann
Affiliation:
Federal Institute for Geosciences and Mineral Resources (BGR), Stilleweg, 2, 30655Hannover, Germany
*
*Author for correspondence: Maria A. Sitnikova, Email: [email protected]

Abstract

The Neoproterozoic Lofdal alkaline carbonatite complex consists of a swarm of carbonatite dykes and two plugs of calcite carbonatite known as the ‘Main’ and ‘Emanya’ carbonatite intrusions, with associated dykes and plugs of phonolite, syenite, rare gabbro, anorthosite and quartz-feldspar porphyry. In the unaltered Main Intrusion calcite carbonatite the principal rare-earth host is burbankite. As burbankite typically forms in a magmatic environment, close to the carbohydrothermal transition, this has considerable petrogenetic significance. Compositional and textural features of Lofdal calcite carbonatites indicate that burbankite formed syngenetically with the host calcite at the magmatic stage of carbonatite evolution. The early crystallisation of burbankite provides evidence that the carbonatitic magma was enriched in Na, Sr, Ba and light rare earth elements. In common with other carbonatites, the Lofdal burbankite was variably affected by alteration to produce a complex secondary mineral assemblage. Different stages of burbankite alteration are observed, from completely fresh blebs and hexagonal crystals through to complete pseudomorphs, consisting of carbocernaite, ancylite, cordylite, strontianite, celestine, parisite and baryte. Although most research and exploration at Lofdal has focused on xenotime-bearing carbonatite dykes and wall-rock alteration, this complex also contains a more typical calcite carbonatite enriched in light rare earth elements and their alteration products.

Type
Article – Gregory Yu. Ivanyuk memorial issue
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is part of a thematic set ‘Alkaline Rocks’ in memory of Dr. Gregory Yu. Ivanyuk

Guest Associate Editor: Anton R. Chakhmouradian

References

Anenburg, M. Mavrogenes, J.A., Frigo, C. and Wall, F. (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science Advances, 6, eabb6570.CrossRefGoogle ScholarPubMed
Audétat, A., Gunther, D. and Heinrich, C.A. (2000) Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F-mineralised Mole granite (Australia). Geochimica et Cosmochimica Acta, 64, 33733393.CrossRefGoogle Scholar
Bell, K. and Blenkinsop, J. (1987) Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity. Geology, 15, 99102.2.0.CO;2>CrossRefGoogle Scholar
Bell, K. and Tilton, G.R. (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42, 19271945.CrossRefGoogle Scholar
Belovitskaya Yu, V. and Pekov, I.V. (2004) Genetic mineralogy of the burbankite group. New Data Minerals, 39, 5064.Google Scholar
Belovitskaya Yu, V., Pekov, I.V. and Kabalov Yu, K. (2000) Refinement of the crystal structures of low rare earth and 'typical' burbankites by Rietveld method. Kristallografiya, 1, 3235 [in Russian].Google Scholar
Bodeving, S., Williams-Jones, A.E. and Swinde, S. (2017) Carbonate–silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal intrusive suite, Namibia. Lithos, 268–271, 383398.CrossRefGoogle Scholar
Borodin, L.S. and Kapustin Yu, L. (1962) Burbankite, the first find in USSR. Doklady Akademii Nauk SSSR, 147, 462465 [in Russian].Google Scholar
Broom-Fendley, S., Brady, A.E., Wall, F., Gunn, G. and Dawes, W. (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geology Reviews, 81, 2341.CrossRefGoogle Scholar
Bühn, B., Rankin, A., Radtke, M., Haller, M. and Knöchel, A. (1999) Burbankite, a (Sr, REE, Na, Ca) - carbonate in fluid inclusions from carbonatite-derived fluids: Identification and characterization using Laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. American Mineralogist, 84, 11171125.CrossRefGoogle Scholar
Bühn, B., Schneider, J., Dulski, P. and Rankin, A.H. (2003) Fluid-rock interaction during progressive migration of carbonatitic fluids, derived from small-scale trace element and Sr, Pb isotope distribution in hydrothermal fluorite. Geochimica et Cosmochimica Acta, 67, 45774595.CrossRefGoogle Scholar
Cangelosi, D., Broom-Fendley, S., Banks, D., Morgan, D. and Yardley, B. (2020) Light rare earth element redistribution during hydrothermal alteration at the Okorusu carbonatite complex, Namibia. Mineraogical Magazine, 84, 4964.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Dahlgren, S. (2021) Primary inclusions of burbankite in calcite carbonatites from the Fen carbonatite complex, southern Norway. Mineralogy and Petrology, 115, 161171 https://doi.org/10.1007/s00710-021-00736-0.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P. and Zaitsev, A.N. (2016) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineralogy and Petrology, 110, 333360.CrossRefGoogle Scholar
Chakhmouradian, A.R., Cooper, M.A., Reguir, E.P. and Moore, M.A. (2017) Carbocernaite from the Bear Lodge carbonatite, Wyoming: revised structure, zoning and rare-earth fractionation on a microscale. American Mineralogist, 102, 13401352.CrossRefGoogle Scholar
Cooper, A.F., Collin, A.K., Palin, J.M. and Sprat, J. (2015) Mineralogical evolution and REE mobility during crystallisation of ancylite-bearing ferrocarbonatite, Haast River, New Zealand. Lithos, 216–217, 324337.CrossRefGoogle Scholar
Dalsin, M.I., Groat, L.A., Creighton, S. and Evams, R.J. (2015) The mineralogy and geochemistry of the Wicheeda carbonatite complex, British Columbia, Canada. Ore Geology Reviews, 64, 523542.CrossRefGoogle Scholar
Dawson, J.B. (2008) The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. Geological Society London, London.Google Scholar
Do Cabo, V.N. (2014) Geological, Mineralogical and Geochemical Characterization of the Heavy Rare Earth-Rich Carbonatites at Lofdal, Namibia. PhD Thesis, Camborne School of Mines, University of Exeter, UK.Google Scholar
Do Cabo, V.N., Wall, F., Sitnikova, M.A., Ellmies, R., Henjes-Kunst, F., Gerdes, A. and Downes, H. (2011) Mid and heavy REE in carbonatites at Lofdal, Namibia. Goldschmidt Conference Abstracts, Prague, Mineralogical Magazine, 75, 770.Google Scholar
Dowman, E., Wall, F., Treloar, P.J. and Rankin, A.H. (2017) Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island Carbonatite, Malawi, Mineralogical Magazine, 81, 13671395.CrossRefGoogle Scholar
Effenberger, H., Kluger, F., Paulus, H. and Wolfel, E.R. (1985) Crystal structure refinement of burbankite. Neues Jahrbuch für Mineralogie – Monatshefte, 4, 161170.Google Scholar
Elliott, H.A.I., Wall, F., Chakhmouradian, A.R., Siegfried, P.R., Dahlgren, S., Weatherley, S., Finch, A.A., Marks, M.A.W., Dowman, E. and Deady, E. (2018) Fenites associated with carbonatite complexes: A review. Ore Geology Reviews, 93, 3859.CrossRefGoogle Scholar
Estrada, S., Henjes-Kunst, F., Burgath, K.P, Roland, N.W., Schäfer, F., Khain, E.V. and Remizov, D.N. (2012) Insights into the magmatic and geotectonic history of the Voikar Massiff, Polar Urals. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163, 941.CrossRefGoogle Scholar
Giebel, R.J., Gauert, C.D.K., Marks, M.A.W., Costin, G. and Markl, G. (2017) Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. American Mineralogist, 102, 12181233.CrossRefGoogle Scholar
Gittins, J. (1989) The origin and evolution of carbonatite magmas. Pp. 580600 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Chapman and Hall, London.Google Scholar
Graham, S. and Keulen, N. (2019) Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assessment of fault gouge using Mineralogic. Minerals, 9, 665.CrossRefGoogle Scholar
Guzmics, T., Mitchell, R.H., Szabó, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite apatite and monticellite in Kerimasi calciocarbonatite Tanzania: melt evolution and petrogenesis. Contribution to Mineralogy and Petrology, 161, 177196.CrossRefGoogle Scholar
Guzmics, T., Zajacz, Z., Mitchell, R.H., Szabó, C. and Wälle, M. (2015) The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contribution to Mineralogy and Petrology, 169, 17.CrossRefGoogle Scholar
Guzmics, T., Berkesi, M., Bodnar, R.J., Fall, A., Bali, E., Milke, R., Vetlényi, E. and Szabó, C. (2019) Natrocarbonatites: A hidden product of three-phase immiscibility. Geology, 47, 527530.CrossRefGoogle Scholar
Halter, W.E. and Webster, J.D. (2004) The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chemical Geology, 210, 16.CrossRefGoogle Scholar
Herman, R.G., Bogdan, C.E., Sommer, A.J. and Simpson, D.R. (1987) Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe. Applied Spectroscopy, 41, 437440.CrossRefGoogle Scholar
Kapustin Yu, L. (1980) Mineralogy of carbonatites. Amerind Publishing, New Dehli, 259 pp.Google Scholar
Kapustin Yu, L. (1983) Features of fenitization around carbonatite bodies. International Geological Reviews, 25, 13931404.CrossRefGoogle Scholar
Keller, J. (1989) Extrusive carbonatites and their significance. Pp. 7088 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Chapman and Hall, London.Google Scholar
Keller, J. and Zaitsev, A.N. (2006) Calciocarbonatite dykes at Oldoinyo Lengai, Tanzania: the fate of natrocarbonatite. The Canadian Mineralogist, 44, 857876.CrossRefGoogle Scholar
Keller, J. and Zaitsev, A.N. (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai Tanzania: composition of lavas from 1988 to 2007. Lithos, 152, 4755.CrossRefGoogle Scholar
Keulen, N., Malkki, S.N. and Graham, S. (2020) Automated quantitative mineralogy applied to metamorphic rocks. Minerals, 10, https://doi.org/10.3390/min10010047CrossRefGoogle Scholar
Le Bas, M.J. (1989) Diversification of carbonatites. Pp.428447 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Chapman and Hall, London.Google Scholar
Le Bas, M.J. (2008) Fenites associated with carbonatites. The Canadian Mineralogist, 46, 915932.CrossRefGoogle Scholar
Migdisov, A.A. and Williams-Jones, A.E. (2008) A spectrophotometric study of Nd(III), Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures. Geochimica et Cosmochimica Acta, 72, 52915303.CrossRefGoogle Scholar
Migdisov, A.A., Williams-Jones, A.E. and Wagner, T. (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300°C. Geochimica et Cosmochimica Acta, 73, 70877109.CrossRefGoogle Scholar
Migdisov, A., Williams-Jones, A.E., Brugger, J. and Caporusci, F.A. (2016) Hydrothermal transport deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chemical Geology, 439, 1342.CrossRefGoogle Scholar
Miller, R.M. (2008) Neoproterozoic and early Paleozoic rocks of the Damara Orogen. Pp. 13-1114-1 in: The Geology of Namibia. (Miller, R.M., editor). Geological Survey Windhoek, Namibia.Google Scholar
Mills, S.J., Kartashov, P.M., Kampf, A.R., Konev, A.A., Koneva, A.A. and Raudsepp, M. (2012) Cordylite-(La), a new mineral species in fenite from the Biraya Fe–REE deposit, Irkutsk, Russia. The Canadian Mineralogist, 50, 12811290.CrossRefGoogle Scholar
Moore, M., Chakhmouradian, A.R., Mariano, A.N. and Sidhu, R. (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geology Reviews, 64, 499521.CrossRefGoogle Scholar
Nadeau, O., Cayer, A., Pelletier, M., Stevenson, R. and Jébrak, M. (2015) The Paleoproterozoic Montviel carbonatite-hosted REE–Nb deposit, Abitibi, Canada: Geology, mineralogy, geochemistry and genesis. Ore Geology Reviews, 67, 314335.CrossRefGoogle Scholar
Namibia Rare Earths (2011, 2012, 2013, 2014) – Internal reports, and press releases from www.namibiarareearths.com.Google Scholar
Pekov, I.V., Chukanov, N.V. and Belovitskaya Yu, V. (1998) Khanneshite and petersenite-(Ce) from the Khibiny. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 127, 92100 [in Russian].Google Scholar
Schmidt, R., Fitzek, H., Nachtnebel, M, Mayrhofer, C., Schroettner, H. and Zankel, A. (2019). The combination of electron microscopy, Raman microscopy for the investigation of polymeric materials. Macromolecular Symposia, 384, https://doi.org/10.1002/masy.201800237CrossRefGoogle Scholar
Simmonetti, A. and Bell, K. (1995) Nd, Pb, and Sr isotope systematics of fluorite at Amba Dongar carbonatite complex, India; evidence for hydrothermal and crustal fluid mixing. Economic Geology, 90, 20182027.CrossRefGoogle Scholar
Subbotin, V.V., Voloshin, A.V., Pakhomovsky Ya, A. and Bakhchisaraitsev A, Yu. (1999) Calcioburbankite and burbankite from the Vuoriyarvi carbonatite massif (new data). Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 128, 7887 [in Russian].Google Scholar
Swinden, H.S. and Siegfried, P. (2012) 43–101 Technical Report on the Rare Earth Element Occurrences in the Lofdal Carbonatite Complex, Kunene Region, Khorixas District, Namibia. Published report for Namibia Rare Earths Ltd., Halifax, Canada.Google Scholar
Tuckler, R.D., Belkin, H.E., Schultz, K.J., Peters, S.G., Horton, F., Buttlemann, K. and Scott, E.R. (2012) A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, Southern Afghanistan. Economic Geology, 107, 197208.CrossRefGoogle Scholar
Wall, F. (2004) An illustration of the evolution and alteration of carbonatites using REE, Sr-rich carbonatites at Nkombwa, Zambia. Pp. 4867 in: Deep-seated Magmatism: Its Sources and their Relation to Plume Processes (Vladykin, N. V., editor). Russian Academy of Sciences, Irkutsk – Ulan-Ude, Russia.Google Scholar
Wall, F. and Mariano, A.F (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. Pp. 193225 in: Rare Earth Minerals: Chemistry, Origin and Ore Deposits. (Jones, A.P., Wall, F. and Williams, C.T., editors) Mineralogical Society, London.Google Scholar
Wall, F. and Zaitsev, A.N. (2004) Rare earth minerals in Kola carbonatites. Pp. 341373 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society, London.Google Scholar
Wall, F., Le Bas, M.J., and Srivastava, R.K. (1993) Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India. Mineralogical Magazine, 57, 495513.CrossRefGoogle Scholar
Wall, F., Zaitsev, A.N. and Mariano, A.N. (2001) Rare earth pegmatites, Journal of African Earth Sciences, 32, A35A36.CrossRefGoogle Scholar
Wall, F., Niku-Paalova, V.N., Storey, C., Müller, A. and Jeffries, T. (2008). Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowth on zircon. The Canadian Mineralogist, 46, 861877.CrossRefGoogle Scholar
Wille, G., Hollricher, K. and Schmidt, U. (2018) Exploring the unknown with correlative Raman imaging and scanning electron microscopy. Spectroscopy, 33, 4449.Google Scholar
Williams-Jones, A.E., Migdisov, A.A. and Samson, I.M. (2012) Hydrothermal mobilization of the rare earth elements – a tale of ‘ceria’ and ‘yttria’. Elements, 8, 355360.CrossRefGoogle Scholar
Williams-Jones, A.E., Wollenberg, R. and Bodeving, S. (2015) Hydrothermal fractionation of the rare earth elements and the genesis of the Lofdal REE deposit, Namibia. Pp. 125130 in: Symposium on Strategic and Critical Materials Proccedings (Simandl, G.J. and Neetz, M., editors), British Columbia Geological Survey Paper, Canada.Google Scholar
Wooley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical composition, and element distribution. Pp. 114 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Xu, C., Taylor, R.N., Kynicky, J., Chakhmouradian, A., Song, W. and Wang, L. (2011) The origin of enriched mantle beneath North China block: evidence from young carbonatites. Lithos, 127, 19.CrossRefGoogle Scholar
Yakovenchuk, V.N., Ivanyuk G, Yu., Pakhomovsky Ya, A. and Menshikov Yu, P. (2005) Khibiny. (Wall, F., editor). Laplandia Minerals Ltd, Jyväskylä, Finland, 467 pp.Google Scholar
Zaitsev, A.N. and Chakhmouradian, A.R. (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II. Oxysalt minerals. The Canadian Mineralogist, 40, 103120.CrossRefGoogle Scholar
Zaitsev, A.N., Yakovenchuk, V.N., Chao, G.Y., Gault, R.A., Subbotin, V.V., Pakhomovsky Ya, A. and Bogdanova, A.N. (1996) Kukharenkoite-(Ce), Ba2Ce(CO3)3F, a new mineral from Kola peninsula, Russia and Quebec, Canada. European Journal of Mineralogy, 8, 13271336.CrossRefGoogle Scholar
Zaitsev, A.N., Bell, K., Wall, F. and Le Bas, M.J. (1997) Alkaline rare-earth element carbonates from carbonatites of the Khibina Massif: mineralogy and genesis. Transaction (Doklady) of the Russian Academy of Sciences/Earth Science Sections Akademii Nauk, 355, 786790.Google Scholar
Zaitsev, A.N., Wall, F. and Le Bas, M.J. (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62, 225250.CrossRefGoogle Scholar
Zaitsev, A.N., Demény, A., Sindern, S. and Wall, F. (2002) Burbankite group minerals and their alteration in rare earth carbonatites – source of elements and fluids (evidence from C–O and Sr–Nd isotopic data). Lithos, 62, 1533.CrossRefGoogle Scholar
Zaitsev, A.N., Sitnikova, M.A., Subbotin, V.V., Fernández-Suárez, J. and Jeffries, T.E. (2004) Sallanlatvi complex – a rare example of magnesite and siderite carbonatites. Pp. 201245 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society, London.Google Scholar
Zaitsev, A.N., Wenzel, T., Vennemann, T. and Markl, G. (2013) Tinderet volcano, Kenya: An altered natrocarbonatite locality? Mineralogical Magazine, 77, 213226.CrossRefGoogle Scholar
Zdorik, T.B. (1966) Burbankite and its alteration. Trudy Mineralogicheskogo Muzeya. Akademii Nauk SSSR, 17, 6075 [in Russian].Google Scholar
Supplementary material: File

Sitnikova et al. supplementary material

Sitnikova et al. supplementary material 1

Download Sitnikova et al. supplementary material(File)
File 18.5 KB
Supplementary material: File

Sitnikova et al. supplementary material

Sitnikova et al. supplementary material 2

Download Sitnikova et al. supplementary material(File)
File 17.1 KB
Supplementary material: File

Sitnikova et al. supplementary material

Sitnikova et al. supplementary material 3

Download Sitnikova et al. supplementary material(File)
File 17.7 KB