Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T22:49:50.412Z Has data issue: false hasContentIssue false

An EXAFS study of the local structural environments of Fe, Co, Zn and Mg in natural and synthetic staurolites

Published online by Cambridge University Press:  05 July 2018

C. M. B. Henderson
Affiliation:
Department of Earth Sciences, University of Manchester, Manchester MI3 9PL and Daresbury Laboratory, CLRC, Warrington WA4 4AD, UK
J. M. Charnock
Affiliation:
Department of Earth Sciences, University of Manchester, Manchester MI3 9PL and Daresbury Laboratory, CLRC, Warrington WA4 4AD, UK
G. Cressey
Affiliation:
Department of Mineralogy, Natural History Museum, London SW7 5BD, UK
D. T. Griffen
Affiliation:
Department of Geology, Brigham Young University, Provo, Utah 84602, USA

Abstract

X-ray absorption spectroscopy (XAS) has been used to study the local structures of Fe, Co, Zn, and Mg in synthetic and natural staurolites. Results for the near-edge features (XANES) and refined EXAFS were used to deduce the crystallographic site(s) occupied for each element. The least squares refined, mean first shell metal-O bond lengths, coordination numbers, and Debye-Waller factors are in the ranges: Fe 1.97–1.99 Å, 3.5–4.1, 0.013–0.023 Å2; Co 1.97–1.98 Å, 3.5–3.9, 0.009–0.014 Å2; Zn 1.95–1.96 Å, 3.7–3.8, 0.008–0.009 Å2; and Mn 1.99 Å, 3.8, 0.012 Å2. No significant differences were found which depended on element concentration or whether the sampes are synthetic or natural. The refined bond length for Mg in end-member Mg-staurolite is 2.00 Å but EXAFS data did not allow refinement to give reliable coordination number and Debye-Waller factor estimates. The EXAFS data, together with staurolite and model compound XANES features, suggest that > about 90% of Fe, Co, Zn and Mn are concentrated in the tetrahedral T2 site, while in Mg-staurolite > about 75% of the total Mg is in T2 with the remainder in octahedral sites. In natural staurolite from Pizzo Forno (PF2), a greater proportion of Mg appears to be in octahedral coordination.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, V.D. (1989) Iron distribution in staurolite at room and low temperatures. Amer. Mineral., 74, 610-19.Google Scholar
Binsted, N., Campbell, J.W., Gurman, S.J. and Stephenson, P.C. (1991) SERC Daresbury Laboratory EXCURV92 program.Google Scholar
Bringhurst, K.N. and Griffen, D.T. (1986) Staurolite- lusakite series. II. Crystal structure and optical properties of a cobaltoan staurolite. Amer. Mineral, 71, 1466-72.Google Scholar
Brown, G.E., Calas, G., Waychunas, G.A. and Petiau, J. (1988) X-ray absorption spectroscopy: Applications in mineralogy and geochemistry. Reviews in Mineralogy, (Min. Soc. Amer.), 18, 431-512.Google Scholar
Brown, G.E., Jr., Farges, F. and Calas, G. (1995) X-ray scattering and X-ray spectroscopy studies of melts. Reviews in Mineralogy, (Min. Soc. Amer.), 32, 317-410.Google Scholar
Cêch, F., Povondra, P. and Vrana, S. (1981) Cobaltoan staurolite from Zambia. Bull. Mineral, 104, 526-9.Google Scholar
Dutrow, B. (1991) The effects of Al and vacancies on Li substitution in iron staurolite: A synthesis approach. Amer. Mineral., 76, 42-8.Google Scholar
Dutrow, B., Holdaway, M.J., and Hinton, R.W. (1986) Lithium in staurolite and its petrologic significance. Contrib. Mineral. Petrol., 94, 496-506.CrossRefGoogle Scholar
Dyar, M.D., Perry, C.L., Rebbert, C.R., Dutrow, B.L., Holdaway, M.J. and Lang, H.M. (1991) Mtissbauer spectroscopy of synthetic and naturally occurring staurolite. Amer. Mineral., 76, 27—41.Google Scholar
Enami, M. and Zang, Q. (1988) Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghai district, Jiangsu province, east China. Amer. Mineral., 73, 48—56.Google Scholar
Fockenberg, T. (1995) Synthesis and chemical varia-bility of Mg-staurolite in the system MgO-Al2O3-SiO2-H2O as a function of water pressure. Eur. J. Mineral., 7, 1373-80.CrossRefGoogle Scholar
Griffen, D.T. (1981) Synthetic Fe/Zn staurolites and the ionic radius of IVZn . Amer. Mineral., 66, 932-7.Google Scholar
Gurman, S.J., Binsted, N. and Ross, I. (1984) A rapid, exact curved-wave theory for EXAFS calculations. J. Phys., C17, 143-51.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Caucia, F. and Callegari, A. (1993a) The crystal chemistry of staurolite. I. Crystal structure and site populations. Canad. Mineral., 31, 551-82.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Caucia, F. and Callegari, A. (1993b) The crystal chemistry of staurolite. II. Order-disorder and the monoclinic –+ orthorhombic phase transition. Canad. Mineral., 31, 583-95.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Caucia, F. and Callegari, A. (1993c) The crystal chemistry of staurolite. III. Local order and chemical composition. Canad. Mineral., 31, 597-616.Google Scholar
Hedin, L. and Lundqvist, S. (1969) Effects of electron-electron and electron-phonon interactions on the one-electron state of solids. Solid State Phys., 23, 1-181.Google Scholar
Henderson, C.M.B., Charnock, J.M., Smith, J.V. and Greaves, G.N. (1993) X-ray absorption spectroscopy of Fe, Mn, Zn, and Ti structural environments in staurolite. Amer. Mineral., 78, 477-85.Google Scholar
Henderson, C.M.B., Cressey, G. and Redfern, S.A.T. (1995) Geological applications of synchrotron radiation. Radiat. Phys. Chem., 45, 459-81.CrossRefGoogle Scholar
Holdaway, M.J., Dutrow, B.L., Borthwick, J., Shore, P., Harmon, R.S. and Hinton, R.W. (1986a) H content of staurolite as determined by H extraction line and ion microprobe. Amer. Mineral., 71, 1135—41.Google Scholar
Holdaway, M.J., Dutrow, B.L. and Shore, P. (1986b) A model for the crystal chemistry of staurolite. Amer. Mineral., 71, 1142-59.Google Scholar
Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Dutrow, B.L., Rumble, D. III and Grambling, J.A. (1991) A new perspective on staurolite crystal chemistry: Use of stoichiometric and chemical end-members for a mole fraction model. Amer. Mineral., 76, 1910-9.Google Scholar
Holdaway, M.J., Guest, R.F., Mukhopadhyay, B. and Dyar, M.D. (1993) Staurolite end-member molar volumes determined from unit-cell measurements of natural specimens. Amer. Mineral., 78, 56—67.Google Scholar
Holdaway, M.J., Mukhopadhyay, B. and Dutrow, B.L. (1995) Thermodynamic properties of stoichiometric staurolite H2Fe4Al18Si8O48 and H6Fe2Al18Si8O48 . Amer. Mineral., 80, 520-33.CrossRefGoogle Scholar
Hollister, L.S. (1970) Origin, mechanism, and con-sequences of compositional sector-zoning in staur-olite. Amer. Mineral., 55, 422—56.Google Scholar
Joyner, R.W., Martin, K.J. and Meehan, P. (1987) Some applications of statistical tests in analysis of EXAFS and SEXAFS data. J. Phys. C: Solid State Phys., 20, 4005-12.CrossRefGoogle Scholar
Lee, P.A. and Pendry, J.B. (1975) Theory of extended X-ray absorption fine structure. Phys. Revs., B11, 2795-811.CrossRefGoogle Scholar
Phillips, L.V. and Griffen, D.T. (1986) Staurolite-lusakite series. I. Synthetic Fe-Co staurolites. Amer. Mineral., 71, 1461-5.Google Scholar
Richardson, S.W. (1967) Staurolite. Carneg. Inst. Washington Yearb., 65, 248-52.Google Scholar
Schreyer, W. and Seifert, F. (1969) High-pressure phases in the system MgO-Al2O3-SiO2-H2O. Amer. J. Sci., 267A, 407-43.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751—67.CrossRefGoogle Scholar
Skerl, A.C. and Bannister, F.A. (1934) Lusakite, a cobalt-bearing silicate from Northern Rhodesia. Mineral. Mag., 23, 598606.Google Scholar
Smith, J.V. (1968) The crystal structure of staurolite. Amer. Mineral., 53, 1139–55.Google Scholar
Soto, J.I. and Azañón, J.M. (1993) The breakdown of Zn-rich staurolite in a metabasite from the Betic Cordillera (SE Spain). Mineral. Mag., 57, 530-3.CrossRefGoogle Scholar
Soto, J.I. and Azañón, J.M. (1994) Zincian staurolite in metabasites and metapelites from the Betic Cordillera (SE Spain). Neues Jahrb. Mineral. Abh., 168, 109-26.Google Scholar
Ståhl, K., Kvick, A and Smith, J.V. (1988) A neutron diffraction study of hydrogen positions at 13 K, domain model, and chemical composition of staurolite. J. Solid State Chem., 73, 362-80.CrossRefGoogle Scholar
Ståthl, K. and Legros, P.F. (1990) On the crystal structure of staurolite. The X-ray crystal structure of staurolite from the Pyrenees and Brittany. Acta Crystallogr., B46, 292301.CrossRefGoogle Scholar
Ward, C.M. (1984) Magnesium staurolite and green chromian staurolite from Fiordland, New Zealand. Amer. Mineral., 69, 531-40.Google Scholar
Waychunas, G.A. (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: Effects of Ti bonding distances, Ti valence, and site geometry on absorption edge structure. Amer. Mineral., 72, 89-101.Google Scholar
Waychunas, G.A., Apted, M.J. and Brown, G.E. (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: Near edge structure. Phys. Chem. Mineral., 10, 19.CrossRefGoogle Scholar