Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T18:05:22.075Z Has data issue: false hasContentIssue false

Zeolitic diagenesis of Oligocene pyroclastic rocks of the Metaxades area, Thrace, Greece

Published online by Cambridge University Press:  05 July 2018

P. Tsolis-Katagas
Affiliation:
Department of Geology, University of Patras, 261 10 Patras, Greece
C. Katagas
Affiliation:
Department of Geology, University of Patras, 261 10 Patras, Greece

Abstract

The unstable glassy component of the Oligocene tuffaceous sediments of the Metaxades area, Thrace, Greece, has undergone extensive zeolitic diagenetic alteration. The authigenic minerals occur as crypto- to micro-crystalline aggregates making up most of the matrix in the altered tuffs and as precipitates in cavities produced by dissolved glass fragments. Glass-shard pseudomorphs are ubiquitous and most of them are partly filled by one or more of the minerals smectite, heulandite, mordenite and silica.

The heulandite group zeolites are mostly high-silica calcium-rich heulandites showing intermediate thermal behaviour between most heulandites and clinoptilolites. Their Si/Al ratios are similar to clinoptilolite (4.74–5.19) but their divalent/monovalent cation ratios (1.5–3.24) are partly superposed onto the ratios of heulandite group 1 and 2 and differ considerably from the values of the relevant ratio in clinoptilolite. Rare K-rich clinoptilolite crystals have been identified in one sample only.

Based on field observations, compositions and paragenetic relationships of coexisting authigenic minerals and the absence of critical phases such as laumontite, analcime or authigenic albite, it is suggested that the Metaxades pyroclastic rocks underwent burial diagenesis intermediate between Iijima's (1978) zones II and III commonly developed in silica saturated environments.

Type
Silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksiev, B. and Djourova, E. G. (1975) C.R. Acad. Bulg. Sci. 28, 517-20.Google Scholar
Alietti, A. (1972) Am. Mineral. 57, 1448-62.Google Scholar
Alietti, A., Brigatti, M. F. and Popi, L. (1977) Neues Jahrb. Mineral., Mh., 493-501.Google Scholar
Andronopoulos, B. (1977) Geol. Geophys. Research, Institute of Geology and Mineral Exploration, Athens, 17, 59 pp. (in Greek).Google Scholar
Boles, J. R. (1972) Am. Mineral. 57, 1463-93.Google Scholar
Fytikas, M. Innocenti, F., Manetti, P., Mazzuoli, R., Peccerilo, A., and Villari, L. (1984). The Geological Evolution of the Eastern Mediterranean (Dixon, J. E. and Robertson, A. H. F., eds.) Geol. Soc. Sp. Publication No. 17, 687-99.Google Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites, Springer Verlag, Berlin Heidelberg, 409 pp.CrossRefGoogle Scholar
Gottardi, G. and Obradovid, J. (1978) Fortschr. Mineral. 56, 316-66.Google Scholar
Hawkins, D. B., Sheppard, R. A. and Gude, A. J., 3rd (1978) Natural Zeolites: Occurrence, Properties, Use (Sand, L. B. and Mumpton, F. A., eds.) Pergamon Press, Elmsford, New York, 3343.Google Scholar
Hay, R. L. (1966) Geol. Soc. Am. Spec. Pap. 85, 130 PP.Google Scholar
Hay, R. L. and Guldman, S. G. (1987) Clays Clay Minerals, 35, 449-57.CrossRefGoogle Scholar
Hay, R. L. and Sheppard, R. A. (1977) Mineralogy and Geology of Natural Zeolites (Mumpton, F. A., ed.. Reviews” in Mineralogy 4, Mineral Soc. Am., Washington, D.C., 93102.CrossRefGoogle Scholar
Hemley, J. (1962) Geol. Soc. Am. Abstracts for 1961. Geol. Soc. Am. Spec. Pap. 68, 196.Google Scholar
Iijima, A. (1978) Natural Zeolites: Occurrence, Properties, Use (Sand, L. B. and Mumpton, F. A., eds.) Pergamon Press, Elmsford, New York, 175-98.Google Scholar
Iijima, A. and Utada, M. (1971) Molecular Sieve Zeolites 1, Advances in Chemistry Series, 101 (Gould, R. F., ed.) Am. Chem. Soc., Washington, D.C., 342-9.Google Scholar
Kanazirski, M. M. and Yanev, Y. Ya. (1983) C.R. Acad. Bulg. Sci. 36, 1571-4.Google Scholar
Lilov, P., Yanev, Y. and Marchev, P. (1987) First Bulgarian- Greek Symposium, Smolyan, Abstracts, 63.Google Scholar
Marantos, J., Kosiaris, G., Karantasis, S. and Grigoriades, G. (1988) Study of the Tertiary zeolitic p yroclastic rocks of Metaxades, Evros county. Unpublished report, Institute of Geology and Mineral Exploration, Athens, 12 pp. (in Greek).Google Scholar
Mason, B. and Sand, L. B. (1960) Am. Mineral. 45, 341-50.Google Scholar
Moncure, G. K., Surdam, R. C. and Mckagne, H. L. (1981) Clays Clay Minerals, 29, 385-96.CrossRefGoogle Scholar
Mumpton, F. A. (1960) Am. Mineral. 45, 351-69.Google Scholar
Petrov, O. E., Karamaneva, T. A. and Kirov, G. N. (1984) C.R. Acad. Bulg. Sci. 37, 785-8.Google Scholar
Ratterman, N. G. and Surdam, R. C. (1981) Clays Clay Minerals, 29, 365-77.CrossRefGoogle Scholar
Shepard, A. O. (1961) Geological Survey Research. U.S. Geol. Surv. Prof. Pap. 424-C, C320-22.Google Scholar
Solakious, N. and Papadopoulos, P. (1988) Micropalaeontological and Palaeographical evolution of the Oligocene, Thrace. Unpublished report, Institute of Geology and Mineral exploration, Athens, 10 pp. (in Greek).Google Scholar
Tsirambides, A., Kassoli-Fournaraki, A., Filippidis, A. and Soldatos, K. (1988) 4th Congress of the Geological Society of Greece, Abstracts, 110-11.Google Scholar
Tsolis-Katagas, P. and Katagas, C. (1989) Clays Clay Minerals (in press).Google Scholar
Utada, M. (1970) Sci. Papers Coll. Gen. Educ. Univ. Tokyo, 20, 191-262.Google Scholar