Published online by Cambridge University Press: 01 September 2021
Thermessaite-(NH4), ideally (NH4)2AlF3(SO4), is a new mineral found as a medium- to high-temperature (~250–300°C) fumarole encrustation at the rim of La Fossa crater, Vulcano, Aeolian Islands, Italy. The mineral deposited as aggregates of minute (<0.2 mm) sharp prismatic crystals on the surface of a pyroclastic breccia in association with thermessaite, sulfur, arcanite, mascagnite, and intermediate members of the arcanite–mascagnite series.
The new mineral is colourless to white, transparent, non-fluorescent, has a vitreous lustre, and a white streak. The calculated density is 2.185 g/cm3. Thermessaite-(NH4) is orthorhombic, space group Pbcn, with a = 11.3005(3) Å, b = 8.6125(3) Å, c = 6.8501(2) Å, V = 666.69(4) Å3 and Z = 4. The eight strongest reflections in the powder X-ray diffraction data [d in Å (I)(hkl)] are: 5.65 (100)(200), 4.84 (89)(111), 6.85 (74)(110), 3.06 (56)(112), 3.06 (53)(221), 3.08 (47)(311), 2.68 (28)(022) and 2.78 (26)(130). The average chemical composition, determined by quantitative SEM-EDS (N by difference), is (wt.%): K2O 3.38, Al2O3 25.35, SO3 36.58, F 26.12, (NH4)2O 22.47, O = F –11.00, total 102.90. The empirical chemical formula, calculated on the basis of 7 anions per formula unit, is [(NH4)1.85K0.15]Σ2.00Al1.06F2.94S0.98O3.06. The crystal structure, determined from single-crystal X-ray diffraction data [R(F) = 0.0367], is characterised by corner-sharing AlF4O2 octahedra which form [001] octahedral chains by sharing two trans fluoride atoms [Al–F2 = 1.8394(6) Å]. Non-bridging Al–F1 distances are shorter [1.756(1) Å]. The two trans oxygen atoms [Al–O = 1.920(2) Å] are from SO4 tetrahedra. NH4+ ions occur in layers parallel to (100) which alternate regularly with (100) layers containing ribbons of corner-sharing AlF4O2 octahedra and associated SO4 groups. The NH4+ ions are surrounded by five oxygen atoms and by four fluorine atoms. The mineral is named as the (NH4)-analogue of thermessaite, K2AlF3(SO4), and corresponds to an anthropogenic phase found in the burning Anna I coal dump of the Anna mine, Aachen, Germany. Both mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2011-077).
Associate Editor: Anthony R Kampf
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.