Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T07:58:58.479Z Has data issue: false hasContentIssue false

Some high-pressure pyroxenes

Published online by Cambridge University Press:  05 July 2018

R. N. Thompson*
Affiliation:
Dept. of Geology, Imperial College of Science and Technology, London, SW7 2AZ

Summary

Microprobe analyses of Ca-rich pyroxenes crystallized in the melting ranges of a magnesian alkali basalt, a transitional basalt, an olivine tholeiite, a tholeiitic andesite, and an augite leucitite at pressures between 8 and 45 kb show complex variation. Ca-poor pyroxene precipitated only from the alkali basalt at pressures between 14 and 18 kb. Pyroxene falling near the Di-Hed join in the pyroxene quadilateral formed at all pressures and temperatures from the leucitite, whereas ‘Ca-rich’ pyroxene crystallizing from the other four compositions was Ca-poor augite to sub-calcic augite. The liquidus Ca-rich pyroxenes all show rising Al and Na and falling Ti with increasing pressure and temperature. Other elements show complex behaviour; all but the leucitite pyroxenes tend to make temporary excursions of solid solution towards Ca-poor pyroxene at intermediate pressures, returning to more Ca-rich compositions at high pressures. At sub-liquidus temperatures Na and Ti consistently rise with falling T at constant P and also with rising P at constant T in these pyroxenes. The behaviour of the other elements in these circumstances depends on the nature of the coexisting phases.

Fe/Mg distribution between Ca-rich pyroxene and liquid, in the form

has a constant value of 0.29 for three separate bulk compositions at widely differing temperatures and pressures. Distribution coefficients for Mg and Fe between pyroxenes and coexisting garnets at high pressures are very similar to those found in garnet pyroxenite xenoliths from Oahu, Hawaii. Systematic shifts in the apparent stoichiometry (all Fe taken as Fe2+) of the augite leucitite pyroxenes are thought to indicate that they have considerable Fe3+ contents at low pressure, decreasing as P rises. If so, they show a strong negative correlation between Na and Fe3+, which negates the customary practice of forming acmite before jadeite component when recalculating the analyses of high-pressure pyroxenes.

The sets of pyroxenes crystallized from each composition show consistent trends when plotted on such diagrams as jadeite vs Ca-Tschermak's ‘molecule’, which have often been used in attempts to discriminate natural pyroxenes formed in differing P-T environments. However, these new data show clearly that the bulk chemistry of the magma has a predominating influence on the composition of the pyroxenes crystallizing from it. Unless it is certain that a suite of natural pyroxenes have all precipitated from the same magma, it is probably pointless to attempt to deduce the relative P-T conditions of their formation from their major element chemistry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, (K.), 1968. Amer. Min., 53, 241.Google Scholar
Aoki, (K.) and Kusnlro, (I.), 1968. Contr. Min. Petr., 18, 326.CrossRefGoogle Scholar
Banno, (S.) and Matsui, (Y.), 1965. Proc. Jap. Acad., 41, 716.CrossRefGoogle Scholar
Beeson, (M. H.) and Jackson, (E. D.), 1970. Min. Soc. Amer. Spec. Paper, 3, 95.Google Scholar
Bence, (A. E.) and Alaee, (A. L.), 1968. Journ. Geology, 76, 382.CrossRefGoogle Scholar
Best, (M. G.), 1970. Contr. Min. Petr., 27, 25.CrossRefGoogle Scholar
Binns, (R. A.), Duggan, (M. B.), and Wilkinson, (J. F. G.), 1970. Amer. Journ. Sci., 269,132.CrossRefGoogle Scholar
Boyd, (F. R.), 1968. Carnegie Instn. Washington, Yearbook, 66, 327.Google Scholar
Boyd, (F. R.) 1970. Mitt. Soc. Amer. Spec. Paper, 3, 63.Google Scholar
Boyd, (F. R.) and Schairer, (J. F.), 1964. Journ. Petrology, 5, 275.CrossRefGoogle Scholar
Brown, (G. C.) and Fyfe, (W. S.), 1972. Proc. 24th Int. Geol. Congress Sect., 2, 27.Google Scholar
Bultitude, (R. J.) and Green, (D. H.), 1971. Journ. Petrology, 12, 12I.CrossRefGoogle Scholar
Davis, (B. T. C.) and Boyd, (F. R.), 1966. Journ. Geophys. Res., 71, 3567.CrossRefGoogle Scholar
Dickey, (J. S.), 1968. Amer. Min., 53, 13o4.Google Scholar
Erlank, (A. J.), and Kushiuro, (I.), 1970. Carnegie lnstn. Washington, Yearbook, 68, 233.Google Scholar
Finger, (L. W.), 1972. Ibid. 71, 600.CrossRefGoogle Scholar
Finger, (L. W.), and Hadidiacos, (C. G.), 1971. Ibid. 70, 269.Google Scholar
Fry, (N.) and Fyfe, (W. S.), 1969. Contr. Min. Petr., 24, I.CrossRefGoogle Scholar
Green, (D. H.), 1966. Earth Planet. Sci. Lett., 1,414.Google Scholar
Green, (D. H.) and Hibberson, (W.), 1970. Phys. Earth Planet. Interiors, 3, 247.CrossRefGoogle Scholar
Green, (D. H.) and Ringwood, (A. E.), 1967. Contr. Min. Petr., 15, lO3.CrossRefGoogle Scholar
Green, (T. H.) and Ringwood, (A. E.), 1968. Ibid. 18, 105.CrossRefGoogle Scholar
Kuno, (H.), 1969. Geol. Soc. Amer. Mem., 115, 189.Google Scholar
Kushiro, (I.), 1962. Japan Journ. Geol. and Geog., 33, 213.Google Scholar
Kushiro, (l.) and Aoki, (K.), 1968. Amer. Min., 53, 1347.Google Scholar
Lindsleu, (D. H.), Carmichael, (I. S. E.), and Nicholls, (J.), 1968. Journ. Geophys. Res., 73, 3351.CrossRefGoogle Scholar
Lovering, (J. F.) and White, (A. J. R.), 1969. Contr. Min. Petr., 21,9.CrossRefGoogle Scholar
O'Hara, (M. J.), 1967. In Ultramafic and Related Rocks (ed. Wyllie, P. J.) New York (John Wiley), 393.Google Scholar
O'Hara, (M. J.) 1969. GeoL Mag., 106,322.Google Scholar
O'Hara, (M. J.) and Yoder, (H. S.), 1967. Scott. Journ. Geol., 3, 67.CrossRefGoogle Scholar
Roeder, (P. L.) and Emslie, (R. F.), 1970. Contr. Min. Petr., 29,275.CrossRefGoogle Scholar
Smith, (D.) and Lindsley, (D. H.), 1971. Amer. Min., 56, 225.Google Scholar
Thompson, (R. N.), 1972. Carnegie lnstn. Washington, Yearbook, 71, 4o6.Google Scholar
Thompson, (R. N.) 1973. Journ. Geol. Soc. London, 129,649.Google Scholar
Thompson, (R. N.) 1974. Ibid., 130, 181.Google Scholar
Thompson, (R. N.) Esson, (J.), and Dunham, (A. C.), 1972. Journ. Petrology, 13,219.CrossRefGoogle Scholar
Thompson, (R. N.) and Flower, (M. F. J.), 1971. Earth Planet. Sci. Lett., 12,97.CrossRefGoogle Scholar
Thompson, (R. N.) and Flower, (M. F. J.) and Kusrnro, (I.), 1972. Carnegie Instn. Washington, Yearbook, 71, 615.Google Scholar
Tilley, (c. E.) and Thompson, (R. N.), 1970. Earth Planet. Sci. Lett., 8, 79.CrossRefGoogle Scholar
Tilley, (c. E.) 1972. Geol. Journ., 8, 65.CrossRefGoogle Scholar
Virgo, (D.), 1972. Carnegie Instn. Washington, Yearbook, 71, 534.Google Scholar
Wrote, (A. J. R.), 1964. Amer. Min., 49, 883.Google Scholar
Yagi, (K.) and Onuma, (K.), 1967. Journ. Fac. Sci. Hokkaido Univ., Ser., 4, 13,463.Google Scholar
Yoder, (H. S.) and Tilley, (C. E.), 1962. Journ. Petrology, 3, 342.CrossRefGoogle Scholar