Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T10:03:22.853Z Has data issue: false hasContentIssue false

The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A

Published online by Cambridge University Press:  26 January 2018

E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg MB, R3T 2N2 Canada
F. Cámara
Affiliation:
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Via Mangiagalli 34, 20133, Milano, Italy

Abstract

Here we report a nomenclature and classification for the seidozerite-supergroup minerals. The TS (Titanium-Silicate) block is the main structural unit in all seidozerite-supergroup structures; it consists of a central O (O = Octahedral) sheet and two adjacent H (H = Heteropolyhedral) sheets where Si2O7 groups occur in the H sheets. The TS block is characterized by a planar minimal cell based on translation vectors, t1 and t2, the lengths of these vectors are t1 ≈ 5.5 and t2 ≈ 7 Å, and t1 ^ t2 is close to 90°. The forty-five minerals of the sedozerite supergroup are divided into four groups based on the content of Ti and topology and stereochemistry of the TS block: in rinkite, bafertisite, lamprophyllite and murmanite groups, Ti (+ Nb + Zr + Fe3+ +Mg + Mn) = 1, 2, 3 and 4 apfu (atoms per formula unit), respectively. All TS-block structures consist either solely of TS blocks or of two types of block: the TS block and an I (Intermediate) block that comprises atoms between two TS blocks. Usually, the I block consists of alkali and alkaline-earth cations, H2O groups and oxyanions (PO4)3-, (SO4)2- and (CO3)2-.The general formula of the TS block is as follows AP2 BP2 MH2 MO4 (Si2O7)2X4+n, where MH2 and MO4 = cations of the H and O sheets; MH = Ti, Nb, Zr, Y, Mn, Ca + REE, Ca;MO = Ti, Zr, Nb, Fe3+, Fe2+, Mg, Mn, Zn, Ca, Na; AP and BP = cations at the peripheral (P) sites = Na, Ca + REE, Ca, Zn, Ba, Sr, K; X = anions = O, OH, F, H2O; XO4+n=XO4 +XPn , n = 0, 1, 1.5, 2, 4; XP = XPM and XPA = apical anions of MH and AP cations at the periphery of the TS block.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksenov, S.M., Rastsvetaeva, R.K. and Chukanov, N.V. (2014) The crystal structure of emmerichite Ba2Na3Fe3+Ti2(Si2O7)2O2F2, a new lamprophyllitegroup mineral. Zeitschrift für Kristallographie, 229, 17.CrossRefGoogle Scholar
Andrade, M.B., Yang, H., Downs, R.T., Färber, G., Contreira, R.R., Evans, S.H., Loehn, C.W. and Schumer, B.N. Fluorlamprophyllite, Na3(SrNa) Ti3(Si2O7)2O2F2, a new mineral from Poços de Caldas alkaline massif, Morro do Serrote, Minas Gerais, Brazil. Mineralogical Magazine, https://doi.org/10.1180/minmag.2017.081.027 CrossRefGoogle Scholar
Appleman, D.E., Evans, H.T. Jr., Nord, G.L., Dwornik, E. J. and Milton, C. (1987) Delindeite and lourenswalsite, two new titanosilicates from the Magnet Cove region, Arkansas. Mineralogical Magazine, 51, 417425.CrossRefGoogle Scholar
Bellezza, M., Franzini, M., Larsen, A.O., Merlino, S. and Perchiazzi, N. (2004) Grenmarite, a new member of the götzenite-seidozerite-rosenbuschite group from the Langesundsfjord district, Norway: definition and crystal structure. European Journal of Mineralogy, 16, 971978.CrossRefGoogle Scholar
Belov, N.V. and Organova, N.I. (1962) Crystal chemistry and mineralogy of the lomonosovite group in the light of the crystal structure of lomonosovite. Geochemistry, 1, 413.Google Scholar
Belov, N.V. (1976) Essays on Structural Mineralogy. Nedra, Moscow, 344 pp. [in Russian].Google Scholar
Berzelius, J. (1842) Jahres-Bericht über die Fortschritte der Chemie und Mineralogie, 21, 178179.Google Scholar
Blumrich, J. (1893) Die Phonolithe des Friedländer Bexirkes in Nordböhmen. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 465495.Google Scholar
Boeggild, O.B. (1901) Epistolite, a new mineral. Meddelelser om Grønland X.V., 183190.Google Scholar
Brögger, W.C. (1887) Forelöbig meddelelse om mineralerne på de sydnorske augit- og nefelinsyeniters grovkornige gange. Geologiska Föreningens i Stockholm Förhandlingar, 109(4), 247274.CrossRefGoogle Scholar
Brögger, W.C. (1890) Die miniralien der syenitpegmatitgänge der südnorwegischen augit- und nephelinsyenite. Zeitschrift für Kristallographie und Mineralogie, 16, 7494.Google Scholar
Bussen, I.V., Denisov, A.P., Zabavnikova, N.I., Kozyreva, L.V., Men’shikov, Yu.P. and Lipatova, E.A. (1973) Vuonnemite, a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 102(4), 423426 [in Russian].Google Scholar
Cámara, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group III Ti-disilicate mineral. Mineralogical Magazine, 71, 593610.CrossRefGoogle Scholar
Cámara, F. and Sokolova, E. (2009) From structure topology to chemical composition. X. Titanium silicates: the crystal structure and crystal chemistry of nechelyustovite, a group III Ti-disilicate mineral. Mineralogical Magazine, 73, 887897.Google Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2008) From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, Group-IV minerals. Mineralogical Magazine, 72, 12071228.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Nieto, F. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4 (OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineralogical Magazine, 73, 855870.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite, Na2Ca4REETi(Si2O7)2OF3. Mineralogical Magazine, 75, 27552774.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2012) Kazanskyite, BaTiNbNa3Ti(Si2O7)2O2(OH)2(H2O)4, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. Mineralogical Magazine, 76, 473492.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Khomyakov, A.P. (2013) Kolskyite, (Ca□) Na2Ti4(Si2O7)2O4(H2O)7, a Group-IV Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 51, 921936.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A. and Hawthorne, F.C. (2014) Saamite, Ba□TiNbNa3Ti(Si2O7)2O2(OH)2 (H2O)2, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 52, 745761.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A. and Pautov, L.A. (2016a) From structure topology to chemical composition. XIX. Titanium silicates: revision of the crystal structure and chemical formula of bafertisite, Ba2Fe2þ 4 Ti2(Si2O7)2O2(OH)2F2, a Group-II TS-block mineral. The Canadian Mineralogist, 54, 4963.Google Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2016b) From structure topology to chemical composition. XXII. Titanium silicates: revision of the crystal structure of jinshajiangite, NaBaFe2þ 4 Ti2(Si2O7)2 O2(OH)2F, a Group-II TS-block mineral. The Canadian Mineralogist, 54, 11871204.Google Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Charrier, T., Dorcet, V. and Carpentier, J.-F. (2017) Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group-I TSblock mineral from the Lagoa do Fogo, the Fogo volcano, the São Miguel Island, the Azores: description and crystal structure. Mineralogical Magazine, 81, 369381.CrossRefGoogle Scholar
Chao, G.Y. (1991) Perraultite, a new hydrous Na-KBa- Mn-Ti-Nb silicate species from Mont Saint-Hilaire, Quebec. The Canadian Mineralogist, 29, 355358.Google Scholar
Christiansen, C.C., Makovicky, E. and Johnsen, O. (1999) Homology and typism in heterophyllosilicates. Neues Jahrbuch für Mineralogie-Abhandlungen, 175, 153189.CrossRefGoogle Scholar
Christiansen, C.C., Johnsen, O. and Makovicky, E. (2003a) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 12031224.CrossRefGoogle Scholar
Christiansen, C.C., Gault, R.A., Grice, J.D. and Johnsen, O. (2003b) Kochite, a new member of the rosenbuschite group from the Werner Bjerge alkaline complex, East Greenland. European Journal of Mineralogy, 15, 551554.Google Scholar
Chukanov, N.V., Moiseev, M.M., Pekov, I.V., Lazebnik, K.A., Rastsvetaeva, R.K., Zayakina, N.V., Ferraris, G. and Ivaldi, G. (2004) Nabalamprophyllite Ba(Na,Ba) Na3Ti[Ti2O2Si4O14](OH,F)2 – a new layer titanosilicate of the lamprophyllite group from Inagli and Kovdor alkaline-ultrabasic massifs, Russia. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 133(1), 5972 [in Russian].Google Scholar
Chukanov, N.V., Rastsvetaeva, R.K., Britvin, S.N., Virus, A.A., Belakovskiy, D.I., Pekov, I.V., Aksenov, S.M. and Ternes, B. (2011) Schüllerite, Ва2Na(Mn,Ca) (Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4, a new mineral from the Eifel volcanic region, Germany. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 140 (1), 6775 [in Russian].CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K., Aksenov, S.M., Zadov, A.E., Van, K.V., Blass, G., Schüller, W. and Ternes, B. (2012) Lileyite, Bа2(Na, Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllitegroup mineral from the Eifel volcanic area, Germany. European Journal of Mineralogy, 24, 181188.CrossRefGoogle Scholar
Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Blass, G., Pekov, I.V., Belakovskiy, D.I., Tschörtner, J., Schuller, W. and Ternes, B. (2014) Emmerichite, Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic region, Germany. New Data on Minerals, 49, 513 [in Russian].Google Scholar
Dudkin, O.B. (1959) On Barium lamprophyllite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 88 (6), 713715 [in Russian].Google Scholar
Egorov-Tismenko, Yu.K. and Sokolova, E.V. (1987) Comparative crystal chemistry of a group of titanium silicate analogues of mica. Pp. 96106 in: Comparative Crystal Chemistry. Moscow State University, Moscow [in Russian].Google Scholar
Egorov-Tismenko, Yu.K. and Sokolova, E.V. (1990) Homologous series seidozerite-nacaphite. Mineralogicheskii Zhurnal, 12(4), 4049 [in Russian].Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+ Nb2(Si2O7)2(PO4)2O3(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 37, 13111320.Google Scholar
Ferraris, G., Ivaldi, G., Khomyakov, A.P., Soboleva, S.V., Belluso, E. and Pavese, A. (1996) Nafertisite, a layer titanosilicate member of a polysomatic series including mica. European Journal of Mineralogy, 8, 241249.CrossRefGoogle Scholar
Ferraris, G., Khomyakov, A.P., Belluso, E. and Soboleva, S.V. (1997) Polysomatic relationships in some titanosilicates occurring in the hyperagpaitic alkaline rocks of the Kola Peninsula, Russia. Proceedings 30th International Geological Congress. Mineralogy, 16, 1727.Google Scholar
Gerasimovskiy, V.I. (1950) Lomonosovite, a new mineral. Doklady Akademii Nauk SSSR, 70, 8386 [in Russian].Google Scholar
Gerasimovskiy, V.I. and Kazakova, M.Ye. (1962) Betalomonosovite. Doklady Akademii Nauk SSSR, Earth Sciences, 142(3), 118121.Google Scholar
Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J. M., Dŭrovič, S., Jagodzinski, H., Krishna, P., deWolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K. and Abrahams, S.C. (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallographica, A40, 399404.CrossRefGoogle Scholar
Gutkova, N.N. (1930) A new titanosilicate, murmanite, from the Lovozero tundra. Doklady Rossiiskoi Akademii Nauk, Ser. A, 27, 731736 [in Russian].Google Scholar
Hackman, V. (1894) Petrographische Beschreibung des nephelinsyenites vom Umptek und einiger ihn begleitenden Gesteine. Bulletin de la Société de Géographie de Finlande Fennia, 11(2), 101196.Google Scholar
Hong, W. and Fu, P. (1982) Jinshajiangite, a new Ba-Mn- Fe-Ti-bearing silicate mineral. Geochemistry (China), 1, 458464.Google Scholar
Khomyakov, A.P., Kurova, T.A. and Chistyakova, N.I. (1983) Sobolevite, Na14Ca2MnTi3P4Si4O34 – a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 112(4), 456461 [in Russian].Google Scholar
Khomyakov, A.P., Nechelyustov, G.N., Sokolova, E.V. and Dorokhova, G.I. (1992) Quadruphite, Na14CaMgTi4[Si2O7]2[PO4]2O4F2 and polyphite Na17Ca3Mg(Ti,Mn)4[Si2O7]2[PO4]6O2F6, two new minerals of the lomonovosite group. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 121(1), 105112 [in Russian].Google Scholar
Khomyakov, A.P., Men’shikov, Yu.P., Nechelyustov, G.N. and Zhou, H. (2001) Bussenite, Na2Ba2FeTiSi2O7 (CO3)(OH)3F, a new mica-like titanosilicate from the Khibina alkaline massif (Kola Peninsula). Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 130(3), 5055 [in Russian].Google Scholar
Khomyakov, A.P., Men’shikov, Yu.P., Ferraris, G., Nèmeth, P. and Nechelyustov, G.N. (2005) Bykovaite, BaNaFE5B;(Na,Ti)4[(Ti,Nb)2(OH,O)3Si4O14] (OH,F)2– the new heterophyllosilicate from Lovozero alkaline massif, Kola Peninsula, Russia. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 134(1), 4048 [in Russian].Google Scholar
Kravchenko, S.M., Vlasova, E.V., Kazakova, M.E., Ilyukhin, V.V. and Abrashev, K.K. (1961) Innelite, a new barium silicate. Doklady Akademii Nauk SSSR, 141(5), 11981199 [in Russian].Google Scholar
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya. A. and Men’shikov, Yu. P. (2003) Crystal structures of lamprophyllite-2M and lamprophyllite- 2O from the Lovozero alkaline massif, Kola peninsula, Russia. European Journal of Mineralogy, 15, 711718.CrossRefGoogle Scholar
Lorenzen, J. (1884) Untersuchung einiger Mineralien aus Kangerdluarsuk in Grönland. Zeitschrift für Kristallographie, 9, 243254.Google Scholar
Lyalina, L., Zolotarev Jr., A. Selivanova, E., Savchenko, E., Zozulya, D., Krivovichev, S. and Mikhailova, Yu. (2015) Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola Peninsula, Russia). Mineralogy and Petrology, 109, 443451.CrossRefGoogle Scholar
Lyalina, L.M., Zolotarev Jr., A.A., Selivanova, E.A., Savchenko, Ye.E., Krivovichev, S.V., Mikhailova, Yu. A., Kadyrova, G.I. and Zozulya, D.R. (2016) Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia. Mineralogy and Petrology, 110, 895904.CrossRefGoogle Scholar
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D. I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N. and Giester, G. (2016) Calciomurmanite, (Na,□)2Ca(Ti, Mg,Nb)4[Si2O7]2O2(OH,O)2(H2O)4, a new mineral from the Lovozero and Khibiny alkaline complexes, Kola Peninsula, Russia. European Journal of Mineralogy, 28, 835845.CrossRefGoogle Scholar
McDonald, A.M., Grice, J.D. and Chao, G.Y. (2000) The crystal structure of yoshimuraite, a layered Ba– Mn–Ti silicophosphate, with comments of fivecoordinated Ti4+. The Canadian Mineralogist, 38, 649656.CrossRefGoogle Scholar
Men’shikov, Yu.P., Bussen, I.V., Goiko, E.A., Zabavnikova, N.I., Mer’kov, A.N. and Khomyakov, A.P. (1975) Bornemanite – a new silicophosphate of sodium, titanium, niobium and barium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 104(3), 322326 [in Russian].Google Scholar
Men’shikov, Yu.P., Khomyakov, A.P., Polezhaeva, L.I. and Rastsvetaeva, R.K. (1996) Shkatulkalite, Na10MnTi3Nb3(Si2O7)6(OH)2F·12H2O – a new mineral. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 125(5), 120126 [in Russian].Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Nèmeth, P., Khomyakov, A.P., Ferraris, G. and Men’shikov, Yu.P. (2009) Nechelyustovite, a new heterophyllosilicate mineral, and new data on bykovaite: a comparative TEM study. European Journal of Mineralogy, 21, 251260.CrossRefGoogle Scholar
Nickel, E.H. (1993) Standardisation of polytype suffixes. Mineralogical Magazine, 57, 757757.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Kulikova, I.M. and Belakovsky, D.I. (2006) Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral from agpaitic pegmatites of Kovdor massif, Kola Peninsula. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 135(3), 5260 [in Russian].Google Scholar
Pekov, I.V., Britvin, S.N., Zubkova, N.V., Chukanov, N.V., Bryzgalov, I.A., Lykova, I.S., Belakovskiy, D.I. and Pushcharovsky, D.Yu. (2013) Vigrishinite, Zn2Ti4–x Si4O14 (OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geology of Ore Deposits, 55, 575586.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Chukanov, N.V., Yapaskurt, V. O., Belakovskiy, D.I., Zolotarev Jr, A.A. and Zubkova, N.V. (2014) Zvyaginite, NaZnNb2Ti(Si2O7)2O(OH, F)3(H2O)4+x (x > 1), a new mineral of the epistolite group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 56, 644656.CrossRefGoogle Scholar
Petersen, O.V., Rønsbo, J.G. and Leonardsen, E.S. (1989) Nacareniobsite-(Ce), a new mineral species from the Ilímaussaq alkaline complex, South Greenland, and its relation to mosandrite and the rinkite series. Neues Jahrbuch für Mineralogie – Monatshefte, 2, 8496.Google Scholar
Pyatenko, Yu.A., Voronkov, A.A. and Pudovkina, Z.V. (1976) Mineralogical Crystal Chemistry of Titanium. Nauka, Moscow [in Russian].Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high-barium analogue of lamprophyllite with a primitive unit cell. Doklady Chemistry, 368, 228231.Google Scholar
Rastsvetaeva, R.K., Eskova, E.M., Dusmatov, V.D., Chukanov, N.V. and Schneider, F. (2008) Surkhobite: revalidation and redefinition with the new formula, (Ba,K)2CaNa(Mn,Fe2+,Fe3+)8Ti4(Si2O7)4O4(F,OH,O)6. European Journal of Mineralogy, 20, 289295.CrossRefGoogle Scholar
Sahama, Th.G. and Hytönen, M.A. (1957) Gotzenite and combeite, two new silicates from the Belgian Congo. Mineralogical Magazine, 31, N.238, 503510.CrossRefGoogle Scholar
Semenov, E.I. and Zhang Peishan (1959) New Mineral – bafertisite. Science Record. New Ser. Mineralogy, III (12), 652655 [in Russian].Google Scholar
Semenov, E.I., Kazakova, M.E. and Simonov, V.I. (1958) A new zircon mineral seidoserite and other minerals of the wohlerite group in alkaline pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 87 (5), 590597 [in Russian].Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. The Canadian Mineralogist, 45, 12471261.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2008) From structure topology to chemical composition. III. Titanium silicates: crystal chemistry of barytolamprophyllite. The Canadian Mineralogist, 46, 403412.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51,.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2014) From structure topology to chemical composition. XVII. Fe3+ versus Ti4+: The topology of the HOH layer in ericssonite- 2O, Ba2 Fe3þ 2 Mn4(Si2O7)2O2(OH)2, ferroericssonite, Ba2Fe3þ 2 Fe2þ 4 (Si2O7)2O2(OH)2, and yoshimuraite, Ba4Fe4þ 2 Mn4(Si2O7)2(PO4)2O2(OH)2. The Canadian Mineralogist, 52, 569576.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2016) From structure topology to chemical composition.XXI. Understanding the crystal chemistry of barium in TS-block minerals. The Canadian Mineralogist, 54, 7995.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11–14] trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadian Mineralogist, 39, 12751294.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008a) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadian Mineralogist, 46, 13231331.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2008b) From structure topology to chemical composition. V. Titanium silicates: crystal chemistry of nacareniobsite-(Ce). The Canadian Mineralogist, 46, 13331342.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2013) From structure topology to chemical composition. XIV. Titanium silicates: refinement of the crystal structure and revision of the chemical formula of mosandrite, (Ca3REE)[(H2O)2Ca0.5□0.5]Ti(Si2O7)2(OH)2(H2O)2, a Group-I mineral from the Saga mine, Morje, Porsgrunn, Norway. Mineralogical Magazine, 77, 27532771.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F. (2017) From structure topology to chemical composition. XXIV. Revision of the crystal structure and chemical formula of vigrishinite, NaZnTi4(Si2O7)2O3(OH)(H2O)4, a seidozeritesupergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, https://doi.org/10.1180/minmag.2017.081.060 CrossRefGoogle Scholar
Sokolova, E., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1989) Crystal structure of nacaphite. Soviet Physics Doklady, 34, 911.Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 15271544.CrossRefGoogle Scholar
Sokolova, E., Abdu, Y., Hawthorne, F.C., Stepanov, A.V., Bekenova, G.K. and Kotel’nikov, P.E. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. I. A new titanium-silicate mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan. Mineralogical Magazine, 73, 847854.CrossRefGoogle Scholar
Sokolova, E., Cámara, F. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XI. Titanium silicates: crystal structures of innelite-1T and innelite-2M from the Inagli massif, Yakutia, Russia and the crystal chemistry of innelite. Mineralogical Magazine, 75, 24952518. .CrossRefGoogle Scholar
Sokolova, E., Hawthorne, F.C. and Abdu, Y.A. (2013) From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, Na2Ba2Mg2Ti2 (Si2O7)2O2F2, from the Eifel volcanic region, Germany. The Canadian Mineralogist, 51, 715725.CrossRefGoogle Scholar
Sokolova, E., Cámara, F., Abdu, Y.A., Hawthorne, F.C., Horváth, L. and Pfenninger-Horváth, E. (2015a) Bobshannonite, Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4 O4(OH)4(O,F)2, a new TS-block mineral from Mont Saint-Hilaire, Québec, Canada: Description and crystal structure. Mineralogical Magazine, 79, 17911811.CrossRefGoogle Scholar
Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Genovese, A., Cámara, F. and Khomyakov, A.P. (2015b) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a Group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. The Canadian Mineralogist, 53, 401428.CrossRefGoogle Scholar
Sokolova, E., Cámara, F., Hawthorne, F.C. and Pautov, L. A. (2016) From structure topology to chemical composition. XX. Titanium silicates: the crystal structure of hejtmanite, Ba2Mn4Ti2(Si2O7)2 O2(OH)2F2, a Group-II TS-block mineral. Mineralogical Magazine, 80, 841853.CrossRefGoogle Scholar
Sokolova, E., Genovese, A., Falqui, A., Hawthorne, F.C. and Cámara, F. (2017) From structure topology to chemical composition. XXIII. Revision of the crystal structure and chemical formula of zvyaginite, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 81, 15331550.CrossRefGoogle Scholar
Vrána, S., Rieder,M. and Gunter, M.E. (1992) Hejtmanite, a manganese-dominant analogue of bafertisite, a new mineral. European Journal of Mineralogy, 4, 3543.CrossRefGoogle Scholar
Watanabe, T., Takéuchi, Y. and Ito, J. (1961) The minerals of the Noda-Tamagawa mine, Iwaté Prefecture, Japan. III. Yoshimuraite, a new barium-titanium-manganese silicate mineral. Mineralogical Journal, 3, 156167.CrossRefGoogle Scholar
Yamnova, N.A., Egorov-Tismenko, Yu.K. and Pekov, I.V. (1998) Crystal structure of perraultite from the coastal region of the Sea of Azov. Crystallography Reports, 43, 401410.Google Scholar
Zhou, H. Rastsvetaeva, R.K., Khomyakov, A.P., Ma, Z. and Shi, N. (2002) Crystal structure of new micalike titanosilicate – bussenite, Na2Ba2Fe2+(TiSi2O7)(CO3) O(OH)(H2O)F. Crystallography Reports, 47, 4346.CrossRefGoogle Scholar