Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:19:14.988Z Has data issue: false hasContentIssue false

Micromorphological instability of a growing face as a source of oscillatory zoning in crystals

Published online by Cambridge University Press:  05 July 2018

A. G. Shtukenberg*
Affiliation:
Crystallography Department, Geological Faculty, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia
YU. O. Punin
Affiliation:
Crystallography Department, Geological Faculty, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia
*

Abstract

Oscillatory zoning in solid solutions of alums ((K,NH4)Al(SO4)2·12H2O, K(Al,Cr)(SO4)2·12H2O, (K,Rb)Al(SO4)2·12H2O) and nitrates of divalent metals ((Sr,Pb)(NO3)2, (Ba,Pb)(NO3)2) grownfrom low-temperature aqueous solutions is considered. The zoning is detected by means of X-ray diffraction topography, crystal optics and electron probe microanalysis and involves variations of the crystal composition and degree of the growth ordering of atoms. The zoning patterns are very different in the predominant ﹛111﹜ and ﹛1̄11﹜ and subordinate ﹛100﹜ and ﹛110﹜ growth sectors. The different types of micromorphological instabilities of a growing face are suggested to explain the origin of the observed zoning.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akizuki, M., Kudoh, Ya. and Kuribayashi, T. (1996) Crystal structures of the ﹛011﹜, ﹛610﹜, and ﹛010﹜ growth sectors inbrewsterite. American Mineralogist, 81, 15071512.CrossRefGoogle Scholar
Allan, M.M. and Yardley, B.W.D. (2007) Tracking meteoric infiltration into a magmatic-hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chemical Geology, 240, 343360.CrossRefGoogle Scholar
Arkhipenko, D.K., Fedorova, E.N., Shebanin, A.P. and Orekhov, B.A. (1985) Refinement of the space group and new crystal chemical data on Pb(NO3)2 and Ba(NO3)2. Pp. 40–46 in: Radiography and Molecular Spectroscopy of Minerals (Arkhipenko, D. K., editor). Nauka, Novosibirsk, Russia (in Russian).Google Scholar
Authier, A. and Zarka, A. (1977) Observation of growth defects inspodumene crystals by X-ray topography. Physics and Chemistry of Minerals, 1, 1526.CrossRefGoogle Scholar
Azimov, P.Ya. and Shtukenberg, A.G. (2000) Simulationof phase diagrams for water-salt systems with solid solutions. Russian Journal of Inorganic Chemistry, 45, 13021309.Google Scholar
Belyustin, A.V. Levina, I.M. and Novosel’tseva, T.P. (1969) Morphologic symmetry of barium nitrate crystals. Soviet Physics Crystallography, 13, 633634.Google Scholar
Chernov, A.A. (1984) Modern Crystallography 3. Crystal Growth. Springer, Berlin.Google Scholar
Fernández-González, Á., Prieto, M., Putnis, A. and López-Andrés, S. (1999) Concentric zoning patterns incrystallizin g (Cd,Ca)CO3 solid solutions from aqueous solutions. Mineralogical Magazine, 63, 331343.CrossRefGoogle Scholar
Fock, A. (1897) Ueber die Löslichkeit von Mischkrystallnu nd die Grösse des Krystallmoleküls. Zitschrift für Kristallographie und Mineralogie, 4–5, 367.Google Scholar
Glasstone, S. and Riggs, E.J. (1925) Complex formation in lead-nitrate solutions. Part II. The quaternary system potassium nitrate-lead nitrate-barium nitratewater. Journal of the Chemical Society, Transactions, 127, 28462854.CrossRefGoogle Scholar
Gopalan, P.S.H. and Kahr, B. (1993) Reevaluation structures for mixed crystals of simple isomorphous salts, BaxPb1–x(NO3)2 . Journal of Solid State Chemistry, 107, 563567.CrossRefGoogle Scholar
Graziani, G., Lucchesi, S. and Scandale, E. (1990) General and specific growth marks in pegmatite beryls. Physics and Chemistry of Minerals, 17, 379384.CrossRefGoogle Scholar
Hill, A.E. and Kaplan, N. (1938) Ternary systems XXII. Formationof solid solutions from alums. Journal of American Chemical Society, 60, 550554.CrossRefGoogle Scholar
Jennissen, H.-D. and Klapper, H. (1984) X-ray topographic study of planar growth defects in nickel sulphate hexahydrate. Zeitschrift für Kristallographie, 167, 3/4, 180–181.Google Scholar
Kalischewski, F., Lubashevsky, I. and Heuer, A. (2007) Boundary-reaction-diffusion model for oscillatory zoning in binary crystals grown from solution. Physical Review E, 75, 021601, 112.Google ScholarPubMed
Klapper, H. (1998) Structural defects incrystals and techniques for their detection. Materials Science Forum, 276–277, 291306.CrossRefGoogle Scholar
Lemmlein, G.G. (1948) Sector zoning of crystals. USSR Academy of Science Press, Moscow-Leningrad (in Russian).Google Scholar
Lemmlein, G.G. (1951) Distribution of color in quartz crystals. Trudi Instituta Kristallografii. Academy of Science, USSR. No. 6, 255268.(inRussian ).Google Scholar
L’Heureux, I. and Jamtveit, B. (2002) A model of oscillatory zoning in solid solutions grown from aqueous solutions: applications to the (Ba,Sr)SO4 system. Geochimica et Cosmochimica Acta, 66, 417429.CrossRefGoogle Scholar
Maiwa, K., Plomp, M., van Enckevort, W.J.P. and Bennema, P. (1998) AFM observation of barium nitrate ﹛111﹜ and ﹛100﹜ faces: spiral growth and two-dimensional nucleation growth. Journal of Crystal Growth, 186, 214223.CrossRefGoogle Scholar
Mullin, J.W. (1972) Crystallization, 2 nd edition. Butterworths, London.Google Scholar
Northrup, P.A. and Reeder, R.J. (1994) Evidence for the importance of growth-surface structure to trace element incorporation in topaz. American Mineralogist, 79, 11671175.Google Scholar
Nowotny, H. and Heger, G. (1983) Structure refinement of strontium nitrate, Ba(NO3)2, and barium nitrate, Ba(NO3)2. Acta Crystallographica, C39, 952–956.CrossRefGoogle Scholar
Nowotny, H. and Heger, G. (1986) Structrure refinement of lead nitrate. Acta Crystallographica, C42, 133–135.Google Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. and Pankrath, R. (1992) Microdistribution of Al, Li, and Na in α quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534544.Google Scholar
Prieto, M., Putnis, A. and Fernández-Díaz, L. (1993) Crystallization of solid solutions from aqueous solutionina porous medium: zoning in (Ba,Sr)SO4 . Geological Magazine, 130, 289299.CrossRefGoogle Scholar
Prieto, M., Fernández-González, A., Putnis, A. and Fernández-Díaz, L. (1997) Nucleation, growth, and zoning phenomena in crystallizing (Ba,Sr)CO3, Ba(SO4,CrO4), (Ba,Sr)SO4, and (Cd,Ca)CO3 solid solutions from aqueous solutions. Geochimica et Cosmochimica Acta, 61, 33833397.CrossRefGoogle Scholar
Putnis, A., Fernández-Díaz, L. and Prieto, M. (1992) Experimentally produced oscillatory zoning in the (Ba,Sr)SO4 solid solution. Nature, 358, 743745.CrossRefGoogle Scholar
Rakovan, J. (2002) Growth and surface properties of apatite. Pp. 57–87 in: Phosphates – Geochemical, Giobiological, and Materials Importance (Kohn, M.L. Rakovan, J. and Hughes, J.M., editors). Reviews in Min eralogy, 48, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Rashkovich, L.N. (1991) KDP-family Single Crystals. Hilger, London-New York.Google Scholar
Rashkovich, L.N., Shekunov, B.Yu., Voitsekhovskii, V.N., Shvedova, M.V. (1989) Growth kinetics of tetrahedronfaces inbarium nitrate. Soviet Physics: Crystallography, 34, 925928.Google Scholar
Reeder, R.J., Fagioli, R.O. and Meyers, W.J. (1990) Oscillatory zoning of Mn in solution-grown calcite crystals. Earth Science Reviews, 29, 3946.CrossRefGoogle Scholar
Ribet, M. and Authier, A. (1982) Stacking fault formation due to the presence of liquid inclusions inbarium nitrate crystals. Journal of Crystal Growth, 57, 541550.CrossRefGoogle Scholar
Ribet, M., Ribet, J.L., Lefaucheux, F. and Robert, M.C. (1980) Growth defects inisomorphous Ba(NO3)2 and Sr(NO3)2 crystals. Journal of Crystal Growth, 49, 334342.CrossRefGoogle Scholar
Robert, M.C., Lefaucheux, F., Sauvage, M. and Ribet, M. (1981) Quantitative lattice parameter mapping in Sr(NO3)2 and Ba(NO3)2 crystals. Journal of Crystal Growth, 52, 976982.CrossRefGoogle Scholar
Robinson, G.W. and Grice, J.D. (1993) The barium analog of brewsterite from Harrisville, New York. Canadian Mineralogist, 31, 687690.Google Scholar
Rusinov, V.L., Kudrya, P.F., Zotov, A.V. and Laputina, I.P. (1996) Self-organization in a crystal-solution system and oscillatory zonationinman ganian calcite. Doklady Earth Science (Proceedings of the Russian Academy of Sciences), 340, 1, 162166.Google Scholar
Scandale, E. and Lucchesi, S. (2000) Growth and sector zoning in a beryl crystal. European Journal of Mineralogy, 12, 357366.CrossRefGoogle Scholar
Sherwood, J.N. and Ristic, R.I. (2001) The influence of mechanical stress on the growth of dissolution of crystals. Chemical Engineering Science, 56, 22672280.CrossRefGoogle Scholar
Sherwood, J.N. and Shripathi, T. (1988) Evidence for the role of pure edge dislocations in crystal growth. Journal of Crystal Growth, 88, 358364.CrossRefGoogle Scholar
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: A common phenomenon. Canadian Mineralogist, 34, 11111126.Google Scholar
Shtukenberg, A.G. (2005) Metastability of atomic ordering in lead-strontium nitrate solid solutions. Journal of Solid State Chemistry, 178, 26082612.CrossRefGoogle Scholar
Shtukenberg, A.G. and Punin, Yu.O. (2007) Optically Anomalous Crystals (Kahr, B., editor). Springer, Dordrecht, The Netherlands.Google Scholar
Shtukenberg, A.G., Punin, Yu.O. and Soloviev, V.N. (2000) Effect of growth conditions on the birefringence of mixed crystals revealed in alum solid solutions. Mineralogical Magazine, 64, 837845.CrossRefGoogle Scholar
Shtukenberg, A.G., Punin, Yu.O., Haegele, E. and Klapper, H. (2001) On the origin of inhomogeneity of anomalous birefringence in mixed crystals: an example of alums. Physics and Chemistry of Minerals, 28, 665674.CrossRefGoogle Scholar
Shtukenberg, A.G., Euler, H., Kirfel, A. and Popov, D.Yu. (2006a) Symmetry reductiona nd cation ordering in solid solutions of strontium-lead and barium-lead nitrates. Zeitschrift für Kristallographie, 221, 681688.Google Scholar
Shtukenberg, A.G., Punin, Yu.O. and Azimov, P. (2006b) Crystallizationk inetics in binary solid solution – aqueous solutions ystems. American Journal of Science, 306, 553574.CrossRefGoogle Scholar
Shtukenberg, A.G., Punin, Yu.O. and Artamonova, O.I. (2009) Effect of crystal compositionan d growth rate on sector zoning in solid solutions grown from aqueous solutions. Mineralogical Magazine, 73, 385398.CrossRefGoogle Scholar
Smolsky, I.L., Voloshin, A.E., Zaitseva, N.P., Rudneva, E.B. and Klapper, H. (1999) X-ray topographic study of striationformationinlayer growth of crystals from solutions. Philosophical Transactions of the Royal Society of London, 357, 26312649.CrossRefGoogle Scholar
Van Enckevort, W.J.P. (1982) Verification of crystal growth models by detailed surface microtopography and X-ray diffraction topography. PhD thesis, Univ. of Nijmegen, Nijmegen, The Netherlands.Google Scholar
Warteresiewiczywna, A. (1929) Krystaly mieszane alunyw. Archiwum mineralogiczne towarzystwa naukowego warszawskiego, 5, 6978.Google Scholar
Zaitseva, N., Smolsky, I. and Carman, L. (2001) Growth phenomena in the surface layer and step generation from the crystal edges. Journal of Crystal Growth, 222, 249262.CrossRefGoogle Scholar