Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:10:27.990Z Has data issue: false hasContentIssue false

Kûngnât, revisited. A review of five decades of research into an alkaline complex in South Greenland, with new trace-element and Nd isotopic data

Published online by Cambridge University Press:  05 July 2018

B. G. J. Upton
Affiliation:
School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, UK
R. Macdonald
Affiliation:
IGMP Faculty of Geology, University of Warsaw, al. Żwirky i Wigury 93, 02-089 Warsaw, Poland
N. Odling
Affiliation:
School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, UK
O. T. Rämö
Affiliation:
Dept. Geosciences and Geography, University Helsinki, 00014 Helsinki, Finland
B. Bagiński
Affiliation:
IGMP Faculty of Geology, University of Warsaw, al. Żwirky i Wigury 93, 02-089 Warsaw, Poland

Abstract

The Kûngnât Complex (1275±1.8 Ma) in the Gardar Alkaline Province, South Greenland, cuts Archaean gneisses and comprises two intersecting syenitic stocks and a gabbroic ring-dyke. The magmas, with increasingly more primitive compositions, were emplaced successively by ring-faulting and roof stoping. The syenites are orthocumulates (cumulus alkali feldspar, olivine, pyroxene, titanomagnetite and apatite; intercumulus phases include alkali amphibole, biotite, quartz and calcite). In the well dissected earlier stock, a 2.2 km-thick layered sequence displays graded modal layering, feldspar lamination and cryptic layering. Modal layering in both stocks is directed mainly inwards at 35° – 50°. Heterogeneous nucleation of the cumulus assemblage, close to steep thermal boundary layers, is inferred. The modal layering is ascribed primarily to gravitational sorting aided by the large density differential between a) feldspar and b) Fe-rich silicates and oxides. Episodic collapse of cumulus + melt slurries contributed to inward-dipping crystal pediments on the chamber floors. The Ring-Dyke (up to 100 m wide) is nearly continuous through 360°. Kûngnât exhibits a compositional nearcontinuum from olivine gabbro through syenite intermediaries to alkali granite, ascribed to protracted assimilation/fractional crystallization processes. The most radiogenic Nd isotope data from Kûngnât (εNdi values between –3.3 and –1.0) point to a lithospheric mantle source, whereas the most unradiogenic values imply enrichment in LREE by crustal contamination of the magmas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anovitz, L.M and Essene, E.J. (1987) Phase equilibria in the system CaCO3–MgCO3–FeCO3. Journal of Petrology, 28, 389414.CrossRefGoogle Scholar
Bailey, D.K. and Schairer, J.F. (1964) Feldspar-liquid equilibria in peralkaline liquids – the orthoclase effect. American Journal of Science, 262, 11981206.CrossRefGoogle Scholar
Blaxland, A.B. (1976) Geochronology and isotope geochemistry of the Gardar alkaline complexes, south Greenland. Unpublished PhD thesis, University of Edinburgh.Google Scholar
Bonin, B. (1988) Peralkaline granites in Corsica: some petrological and geochemical constraints. Rendiconti della Società Italiana di Mineralogia e Petrologia, 43, 281306.Google Scholar
Bowden, P., Black, R., Martin, R.F., Ike, E.C., Kinnaird, J.A. and Batchelor, R.A. (1987) Niger-Nigerian alkaline ring complexes: a classic example of African Phanerozoic anorogenic mid-plate magmatism. Pp 357379. in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar
Brown, W.I. and Parsons, I. (1994) Feldspars in igneous rocks. Pp. 449499 in: Feldspars and their reactions (I. Parsons, editor). NATO ASI Series C421. D. Kluwer Academic Publishers.CrossRefGoogle Scholar
Camara, F., Sokolova, E., Abdu, Y. and Hawthorne, F.C. (2010) The crystal structure of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite: revisions to the crystal structure of the astrophyllite-group minerals. The Canadian Mineralogist, 48, 116.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction to the Rock-Forming Minerals. Longmans, Essex, UK. 528 pp.Google Scholar
DePaolo, D.J. (1981) Neodymium isotopes in the Colorado Front range and crust–mantle evolution in the Proterozoic. Nature, 291, 193196.CrossRefGoogle Scholar
DePaolo, D.J. and Wasserburg, G.J. (1976) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249252.CrossRefGoogle Scholar
Di Carlo, I., Rotolo, S.G., Scaillet, B., Buccheri, V. and Pichavant, M. (2010) Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. Journal of Petrology, 51, 22452276.CrossRefGoogle Scholar
Eby, G.N. (1987) The Monteregian Hills and White Mountain alkaline igneous provinces, eastern North America. Pp. 433444 in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar
Emeleus, C.H. and Harry, W.T. (1970) The Igaliko nepheline syenite complex. General description. Bulletin Grønlands Geologiske Undersøgelse, 85 (also Meddelelser om Grønland 186, 116 pp).Google Scholar
Emeleus, C.H. and Smith, J.V. (1959) The alkali feldspars Vl: sanidine and orthoclase perthites from the Slieve Gullion area, Northern Ireland. American Mineralogist, 44, 11871209.Google Scholar
Emeleus, C.H. and Upton, B.G.J. (1976) The Gardar period in southern Greenland. Pp. 153181. in: The Geology of Greenland (W.S. Watt and A. Escher, editors). The Geological Survey of Greenland, Copenhagen.Google Scholar
Fenner, C.N. (1937) The crystallisation of basalts. American Journal of Science. 18, 225253.Google Scholar
Finch, A.A., Parsons, I. and Mingard, S.C. (1995) Biotites as indicators of fluorine fugacities in late-stage magmatic fluids in the Gardar Province of South Greenland. Journal of Petrology, 36, 17011728.Google Scholar
Fitton, J.G., Saunders, A.D., Larsen, L.-M., Hardarson, B.S. and Norry, M.J. (1998) Volcanic rocks from the southeast Greenland margin at 63ºN: composition, petrogenesis and mantle sources. Pp. 331350. in: Saunders, A.D., Larsen, J.C. and Wise, S.H. (editors). Proceedings of ODP Scientific Results. 152, College Station, Texas, USA.Google Scholar
Fletcher, C.J.N. and Beddoe-Stephens, B. (1987) The petrology, chemistry and crystallization history of the Velasco alkaline province, eastern Bolivia. Pp. 403413. in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar
Govindaraju, K. (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newletter, 18, 1158.CrossRefGoogle Scholar
Hill, P.G. (1974) The petrology of the Aden Volcano, PDR Yemen. Unpublished PhD thesis, University of Edinburgh.Google Scholar
Hodson, M.E. (1994) Igneous layering in the syenites of Nunarssuit and west Kûngnât, South Greenland. Unpublished PhD thesis, University of Edinburgh.Google Scholar
Hodson, M. (1997) Post-crystallisation modification of the igneous layering in the Nunarssuit and West Kûngnât syenites. Mineralogical Magazine, 61, 467483.CrossRefGoogle Scholar
Hodson, M.E. and Finch, A.A. (1997) Trough structures in the Western syenite of Kûngnât, S Greenland. Contributions to Mineralogy and Petrology. 127, 4656.CrossRefGoogle Scholar
Irvine, T.N. (1987a) Processes involved in the formation and development of layered igneous rocks. Appendix ll. Pp. 649–646 in: Origins of Igneous Layering (I. Parsons, editor). NATO ASI Series C196. D. Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
Irvine, T.N. (1987b) Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences and origins. Pp. 185245 in: Origins of Igneous Layering (I. Parsons, editor). NATO ASI Series C196. D. Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Irvine, T.N., Andersen, J.C.Ø. and Brooks, C.K. (1998) Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geologic relations and the origin of rhythmically modally graded layers. Geological Society of America Bulletin, 110, 13981447.2.3.CO;2>CrossRefGoogle Scholar
Kerr, A. and Wardle, R.J. (1997) Definition of an Archean–Proterozoic crustal suture by isotopic studies of basement intersections from offshore wells in the southern Labrador Sea. Canadian Journal of Earth Sciences, 34, 209214.CrossRefGoogle Scholar
Kerr, A.C., Kent, R.W., Thomson, B.A., Seedhouse, J.K. and Donaldson, C.H. (1999) Geochemical evolution of the Tertiary Mull volcano, western Scotland. Journal of Petrology, 40, 873908.CrossRefGoogle Scholar
Kurhila, M., Andersen, T. and Rämö, O.T. (2010) Diverse sources of crustal granitic magma: Lu–Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland. Lithos, 115, 263271.CrossRefGoogle Scholar
Larsen, L.M. (1976) Clinopyroxene and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. Journal of Petrology, 17, 258290.CrossRefGoogle Scholar
Larsen, L.M. (1981) Chemistry of feldspars in the Ilímaussaq augite syenite with additional data on some other minerals. Rapport Grønlands Geologiske Undersøgelse, 103, 3138.Google Scholar
Liégeois, J.P. and Black, R. (1987) Alkaline magmatism subsequent to collision in the Pan-African belt of the Adras des Iforas (Mali). Pp. 381401 in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar
Lowenstern, J.B., Charlier, B.L.A., Clynne, M.A. and Wooden, J.L. (2006) Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea. Journal of Petrology, 47, 21052122.CrossRefGoogle Scholar
Macdonald, R. (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bulletin Volcanologique, 38, 498516.CrossRefGoogle Scholar
Macdonald, R. and Saunders, (1973) Chemical variation in minerals of the astrophyllite group. Mineralogical Magazine, 39, 97111.CrossRefGoogle Scholar
Macdonald, R. and Upton, B.G.J. (1993) The Proterozoic Gardar rift zone, south Greenland: comparisons with the East African Rift System. Pp. 427442 in: Magmatic Processes and Plate Tectonics (H.M. Prichard, N.B.W. Harris and C.R. Neary, editors). Special Publications, 76. Geological Society, London.Google Scholar
Macdonald, R., Upton, B.G.J. and Thomas, J. E. (1973) Potassium- and fluorine-rich hydrous phase coexisting with peralkaline granite in South Greenland. Earth and Planetary Science Letters, 18, 217222.CrossRefGoogle Scholar
Macdonald, R., Davies, G.R., Upton, B.G.J., Dunkley, P.N., Smith, M. and Leat, P.T. (1995) Petrogenesis of Silali volcano, Gregory Rift, Kenya. Journal of the Geological Society, London, 152, 703720.CrossRefGoogle Scholar
Macdonald, R. , Bagiński, B. , Belkin, H.E., Dzierżanowski, L. and Jeżak, L. (2008) REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine, 72, 11471161.CrossRefGoogle Scholar
Macdonald, R., Bagiński, B., Leat, P.T., White, J.C. and Dzierżanowski, P. (2011) Mineral stability in peralkaline silicic rocks: Information from trachytes of the Menengai volcano, Kenya. Lithos, 125, 553568.CrossRefGoogle Scholar
MacKenzie, W.S. and Smith, J.V. (1962) Single crystal X-ray studies of crypto- and micro-perthites. Norsk Geologisk Tidsskrift, 42, 72103.Google Scholar
Markl, G., Marks, M.A.W. and Frost, B.R. (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology, 51, 18311847.CrossRefGoogle Scholar
Marks, M., Vennemann, T., Siebel, W. and Markl, G. (2003) Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44, 12471280.CrossRefGoogle Scholar
Marshall, A.S., Macdonald, R., Rogers, N.W. Fitton, J.G., Tindle, A.G., Nejbert, K. and Hinton, R.W. (2009) Fractionation of peralkaline silicic magmas: the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50, 323359.CrossRefGoogle Scholar
McBirney, A.R. and Noyes, R.M. (1979) Crystallisation and layering of the Skaergaard Intrusion. Journal of Petrology, 20, 487554.CrossRefGoogle Scholar
McDowell, S.D. and Wyllie, P.J. (1971) Experimental studies of igneous rock series: the Kungnat syenite complex of southwest Greenland. Journal of Geology, 79, 173194.CrossRefGoogle Scholar
Mitchell, R.H. and Platt, G.R. (1978) Mafic mineralogy of ferroaugite syenite from the Coldwell alkaline complex, Ontario, Canada. Journal of Petrology, 19, 627651.CrossRefGoogle Scholar
Moorbath, S., Webster, R.K. and Morgan, J.W. (1960) Absolute age determinations in South West Greenland, The Julianehaab granite, the Ilímaussaq batholith and the Kûngnât syenite complex. Bulletin of the Grønlands Geologiske Undersøgelse, 25, 14 pp. (also Meddelelser om Grønland, 169, No.9, 14 pp).Google Scholar
Nash, W.P. and Wilkinson, J.F.G. (1970) Shonkin Sag laccolith, Montana. I. Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. Contributions to Mineralogy and Petrology, 25, 241269.CrossRefGoogle Scholar
Neumann, E.-R. (1976) Compositional relations among pyroxenes, amphiboles and other mafic phases in the Oslo Region plutonic rocks. Lithos, 9, 85109.CrossRefGoogle Scholar
Noble, D.C. (1970) Loss of sodium from crystallised comendite welded tuffs of the Miocene Grouse Canyon Member of the Belted Range Tuff, Nevada. Bulletin of the Geological Society of America, 81, 26772687.CrossRefGoogle Scholar
Oftedahl, C. (1978) Main geologic features of the Oslo graben. Pp. 149165 in: Tectonics and Geophysics of Continental Rifts (I.B. Ramberg and E.-R. Neumann, editors). D. Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Parker, D.F. and White, J.C. (2008) Large-scale silicic alkali magmatism associated with the Buckhorn Caldera, Trans-Pecos Texas,, USA: comparison with Pantelleria, Italy. Bulletin of Volcanology, 70, 403415.CrossRefGoogle Scholar
Parsons, I. (1979) The Klokken gabbro-syenite complex, South Greenland: cryptic variation and origin of inversely graded layering. Journal of Petrology, 20, 653694.CrossRefGoogle Scholar
Parsons, I. and Becker, S.M. (1986) High-temperature fluid-rock interactions in a layered syenite pluton. Nature, 321, 764769.CrossRefGoogle Scholar
Parsons, I. and Brown, W.L. (1988) Sidewall crystallisation in the Klokken intrusion: zoned ternary feldspars and co-existing minerals. Contributions to Mineralogy and Petrology, 98, 431443.CrossRefGoogle Scholar
Peccerillo, A., Barberio, M.R., Yirgu, G., Ayalew, D., Barbieri, M. and Wu, T.W. (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian Rift. Journal of Petrology, 44, 20022032.CrossRefGoogle Scholar
Piilonen, P.C., Lalonde, A.E., McDonald, A.M., Gault, R.A. and Larsen, A.O. (2003) Insights into astrophyllite-group minerals. I. Nomenclature, composition and development of a standardized general formula. The Canadian Mineralogist, 41, 126.CrossRefGoogle Scholar
Platt, R.G. and Mitchell, R.H. (1982) Rb-Sr geochronology of the Coldwell Complex, northwestern Ontario, Canada. Canadian Journal of Earth Sciences, 19, 17961801.CrossRefGoogle Scholar
Platt, R.G. and Woolley, A.R. (1986) The mafic mineralogy of the peralkaline syenites and granites of the Mulanje complex, Malawi. Mineralogical Magazine, 50, 8599.CrossRefGoogle Scholar
Richard, P., Shimizu, N. and Allégre, C.J. (1976) 143Nd/146Nd, a natural tracer: An application to oceanic basalts: Earth and Planetary Science Letters, 31, 269278.Google Scholar
Rønsbo, J.G. (2008) Apatite in the Ilíimaussaq alkaline complex: Occurrence, zonation and compositional variation. Lithos, 106, 7182.CrossRefGoogle Scholar
Rowbotham, G. (1973) Hydrothermal synthesis and mineralogy of the alkali amphiboles. Unpublished PhD thesis, University of Durham, UK.Google Scholar
Sokolova, E. (2012) Further developments in the structure topology of the astrophyllite-group minerals. Mineralogical Magazine, 76, 863882.CrossRefGoogle Scholar
Stephenson, D. (1974) The petrology and mineralogy of the South Qôroq Centre, Igaliko Complex, South Greenland. Lithos, 7, 3541.CrossRefGoogle Scholar
Stephenson, D. and Upton, B.G.J. (1982) Ferromagnesian silicates in a differentiated alkaline complex: Kûngnât Fjeld, South Greenland. Mineralogical Magazine, 46, 283300.CrossRefGoogle Scholar
Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313345 in: Magmatism in the Ocean Basins (A.D. Saunders and M.J. Norry, editors). Special Publication of the Geological Society, 42. Geological Society, London.Google Scholar
Taylor, P.N. and Upton, B.G.J. (1993) Contrasting Pb isotopic compositions in two intrusive complexes of the Gardar magmatic province of South Greenland. Chemical Geology (Isotope Geoscience Section), 104, 261268.Google Scholar
Toplis, M.J. and Carroll, M.R. (1994) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochimica et Cosmochimica Acta, 58, 797810.CrossRefGoogle Scholar
Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoir, 74, 153 pp.Google Scholar
Upton, B.G.J. (1958) The structure and petrology of the Kûngnât Complex,, SW Greenland. Unpublished PhD thesis, University of Oxford, UK.Google Scholar
Upton, B.G.J. (1960) The alkaline complex of Kûngnât Fjeld, South Greenland. Bulletin Grønlands Geologiske Undersøgelse, 27, 145 pp (also Meddelelser om Grønland, 123, Nr. 4, 145 pp).Google Scholar
Upton, B.G.J. (1961) Textural features of some contrasted igneous cumulates from South Greenland. Meddelelser om Grønland, Bd. 123, Nr.6., 31 pp.Google Scholar
Upton, B.G.J. (1964) The geology of Tugtutôq and neighbouring islands South Greenland. Pt. II. Nordmarkitic syenites and related alkaline rocks. Meddelelser om Grønland, 169, 172.Google Scholar
Upton, B.G.J. and Blundell, D.J. (1978) The Gardar igneous province: evidence for Proterozoic continental rifting. Pp. 163172 in: Petrology and Geochemistry of Continental Rifts (E.R. Neumann and I.B. Ramberg, editors.). Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Upton, B.G.J. and Emeleus, C.H. (1987) Mid- Proterozoic alkaline magmatism in southern Greenland: the Gardar province. Pp. 449471 in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar
Upton, B.G.J., Thomas, J.E. and Macdonald, R. (1971) Chemical variation within three alkaline complexes in south Greenland. Lithos, 4, 163184.CrossRefGoogle Scholar
Upton, B.G.J., Parsons, I., Emeleus, C.H. and Hodson, M.E. (1996) Layered alkaline igneous rocks of the Gardar Province, South Greenland. Pp. 331363 in: Layered Intrusions (C.G. Cawthorn, editor). Elsevier Science B.V. CrossRefGoogle Scholar
Upton, B.G.J., Emeleus, C.H., Heaman, L.M., Goodenough, K.M. and Finch, A.A. (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos, 68, 4365.CrossRefGoogle Scholar
van Breemen, O. and Upton, B.G.J. (1972) Age of some Gardar intrusive complexes, South Greenland. Bulletin of the Geological Society of America, 83, 33813390.CrossRefGoogle Scholar
Wager, L.R. and Brown, G.M. (1968) Layered Igneous Rocks. Oliver and Boyd Ltd., Edinburgh, 588 pp.Google Scholar
Wager, L.R. and Deer, W.A. (1939) Geological investigations in East Greenland. Part Lll. The petrology of the Skaergaard intrusion, Kangerdlugssuak. Meddelelser om Grønland, Bd 105, Nr.4, 1352.Google Scholar
Wager, L.R., Brown, G.M. and Wadsworth, W.J. (1960) Types of cumulates. Journal of Petrology, 1, 7385.CrossRefGoogle Scholar
Weaver, S.D., Gibson, I.L., Houghton, B.F. and Wilson, C.J.N. (1990) Mobility of rare earth and other elements during crystallization of peralkaline silicic lavas. Journal of Volcanology and Geothermal Research, 43, 5770.CrossRefGoogle Scholar
White, J.C., Parker, D.F. and Ren, M. (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling. Journal of Volcanology and Geothermal Research, 179, 3355.CrossRefGoogle Scholar
Woolley, A.R. and Jones, G.C. (1987) The petrochemistry of the northern part of the Chilwa alkaline province, Malawi. Pp. 335355 in: Alkaline Igneous Rocks (J.G. Fitton and B.G.J. Upton, editors). Special Publication of the Geological Society, 30. Geological Society, London.Google Scholar