Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T02:34:58.216Z Has data issue: false hasContentIssue false

Kaersutite-bearing gabbroic inclusions and the late dike swarm of Kangerdlugssuaq, East Greenland

Published online by Cambridge University Press:  05 July 2018

C. Kent Brooks
Affiliation:
Institute of Petrology, University of Copenhagen
R. G. Platt
Affiliation:
Grant Institute of Geology, University of Edinburgh

Summary

The Kangerdlugssuaq late dike swarm, which strikes at a high angle to the well-known East Greenland coastal swarm, is described and chemical analyses presented. The basic members are characterized by a high potassium content. A variety of kaersutite-bearing gabbroic inclusions in one member of this swarm is described in detail and microprobe analyses of clinopyroxenes, amphiboles, plagioclases, sheet silicates, and spinel minerals are presented. On the basis of this evidence it is deduced that these inclusions derive from a cumulate sequence formed at depths of between 5 and 10 km beneath the Lower Tertiary land surface. It is likely that fractionation of such assemblages causes a transition, at relatively low pressure, from undersaturated to oversaturated compositions, but the products appear to be quantitatively minor.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Dept. of Geology, Lakehead University, Thunder Bay, Ontario, Canada

References

Aoki, (K.), 1963. The kaersutites and oxykaersutites from alkalic rocks of Japan and surrounding areas. Journ. Petrology, 4, 198-210.CrossRefGoogle Scholar
Aoki, (K.), 1970. Petrology of kaersutite-bearing ultramafic and mafic inclusions in Iki island, Japan. Contr. Min. Petr. 25, 270-83.CrossRefGoogle Scholar
Bacon, (C. R.) and Carmicnael, (I. S. E.), 1973. Stages in the P-T path of ascending basalt magma: an example from San Quintin, Baja California. Ibid. 41, 1-22.CrossRefGoogle Scholar
Baker, (P. E.), Gass, (I. G.), Harris, (P. G.), and Lemaitre, (R. W.), 1964. The volcanological report of the Royal Society Expedition to Tristan da Cunha, 1962. Phil. Trans. Roy. Soc., ser. A, 256, 439-578.Google Scholar
Bearth, (P.), 1959. On the alkali massif of the Werner Bjerge in East Greenland. Medd. Gronland, 153 (4).Google Scholar
Best, (M. G.), 1970. Kaersutite-peridotite inclusions and kindred megaerysts in basanitic lavas, Grand Canyon, Arizona. Contr. Min. Petr. 27, 25-44.CrossRefGoogle Scholar
Bhattacharjt, (S.) and Smith, (C. H.), 1964. Flowage differentiation. Science, 145, 150-3.CrossRefGoogle Scholar
Borley, (G. D.), Suddaby, (P.), and Scott, (P.), 1971. Some xenoliths from the alkalic rocks of Teneriffe, Canary Islands. Contr. Min. Petr. 31, 102-14.CrossRefGoogle Scholar
Bowen, (N. L.), 1928. The Evolution of the Igneous Rocks. Princeton University Press.Google Scholar
Brooks, (C. K.), 1973a. Rifting and doming in southern East Greenland. Nature Phys. Sci. 244, 23-5.CrossRefGoogle Scholar
Brooks, (C. K.), 1973b. The Tertiary of Greenland: a volcanic and plutonic record of continental break-up. Amer. Assoc. Petroleum Geologists, Mere. 19, 150-60.Google Scholar
Brooks, (C. K.), and Rucklidge, (J. C.), 1973. A Tertiary lamprophyre dike with high pressure xenoliths and megacrysts from Wiedemanns Fjord, East Greenland. Contr. Min. Petr. 42, 197-212.CrossRefGoogle Scholar
Burke, (K.) and Dewey, (J. F.), 1973. Plume generated triple junctions: key indicators in applying plate tectonics to old rocks. Journ. Geol. 81, 406-33.CrossRefGoogle Scholar
Cawthorn, (R. G.), Curran, (E. B.), and Arculus, (R. J.), 1973. A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. Journ. Petrology, 14, 327-37.CrossRefGoogle Scholar
Coombs, (D. S.) and Wilkinson, (J. F. G.), 1969. Lineages and fractionation trends in undersaturated volcanic rocks from the East Otago Province (New Zealand) and related rocks. Ibid. 10, 440-501.CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1962. Rock-forming Minerals, vol. 3. Sheet silicates. London (Longmans).Google Scholar
Eugster, (H. P.) and Wones, (D. R.), 1958. Phase relations of hydrous silicates with intermediate Fe/Mg ratios. Carnegie Inst. Washington Year Book, 57, 193.Google Scholar
Finger, (L. W.), 1972. The uncertainty in the calculated ferric iron content of a microprobe analysis. Ibid. 71, 600-3.Google Scholar
Frisch, (T.) and Schmincke (H.-U.), 1969. Petrology of clinopyroxene-amphibole inclusions from the Roque Nublo volcanics, Gran Canaria, Canary Islands (Petrology of Roque Nublo volcanics I). Bull. Volcanol. 33, 1073-88.CrossRefGoogle Scholar
Hamm, (H.-M.) and Vieten, (K.), 1971. Zur Berechnung der kristall-chemischen Formel und des Fe2+ Gehaltes von Klinopyroxen aus Elektronstrahl-Mikroanalysen. Neues Jahrb. Min. Monatsh. 310-14.Google Scholar
Helz, (R. T.), 1973. Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity. Part 1. Mafic phases. Journ. Petrology, 14, 249-302.CrossRefGoogle Scholar
Hey, (M. H.), 1954. A new review of the chlorites. Min. Mag. 30, 277-92.Google Scholar
Huckenholz, (H. G.), 1966. Der petrogenetische Werdegang der Klinopyroxene in der tertiéren Vulkaniten der Hocheifel: III Die Klinopyroxene der Pikritbasalte. Contr. Min. Petr. 12, 73-95.CrossRefGoogle Scholar
Ito, (K.) and Kennedy, (G. C.), 1967. Melting and phase relations in a natural peridotite to 40 kilo-bars. Amer. Journ. Sci. 265, 519-38.CrossRefGoogle Scholar
Kapp, (H.), 1960. Zur Petrologic der Subvulkane zwischen Mesters ViA und Antarctic Havn (OstGrönland). Medd. Grønland, 153 (2).Google Scholar
Kempe, (D. C. R.), Deer, (W. A.), and Wager, (L. R.), 1970. Geological investigations in East Greenland. Part VIII. The petrology of the Kangerdlugssuaq alkaline intrusion, East Greenland. Ibid. 190 (2).Google Scholar
Kusniro, (I.), 1962. Clinopyroxene solid solutions. Part I. The CaAl2SiO6 component. Japan Journ. Geol. Geogr. 33, 212-20.Google Scholar
Kusniro, (I.), 1969. Clinopyroxene solid solutions formed by reactions between diopside and plagioclase at high pressures. Min. Soc. Amer. Spec. Paper, 2, 179-91.Google Scholar
Leake, (B. E.), 1968. A catalogue of analysed calciferous and subcalciferous amphiboles together with their nomenclature and associated minerals. Spec. Paper Geol. Soc. Amer. 98.CrossRefGoogle Scholar
Lemaitre, (R. W.), 1969. Kaersutite-bearing plutonic xenoliths from Tristan da Cunha, South Atlantic. Min. Mag. 37, 185-97.CrossRefGoogle Scholar
Maaløe, (S.), 1974. Zoned plagioclase of the Skaergaard intrusion, East Greenland. Unpublished dissertation, University of Copenhagen.Google Scholar
Muñoz, (M.), 1973. Inclusiones máificas y ultramáificas en 1as formaciones volcáinicas de la isla de Gran Canaria. Estudios Geologicos Inst. ‘Lucas Mallada’, 29, 113-30.Google Scholar
Muñoz, (M.), and Sagredo, (J.), 1974. Clinopyroxenes as geobarometric indicators in mafic and ultramafic rocks from the Canary Islands. Contr. Min. Petr. 44, 139-47.CrossRefGoogle Scholar
Sagredo, (J.), 1973. Estudio de las enclaves de rocas ultramáificas con anfibol que aparecen en los basaltos al NW de Cartagena (provincia de Murcia). Estudios Geologicos Inst. ‘Lucas Mallada’, 29, 53-62.Google Scholar
Stevens, (R. E.), 1944. Composition of some chromites of the Western Hemisphere. Amer. Min. 29, 1-34.Google Scholar
Stueber, (A. M.) and Ikramuddin, (M.), 1974. Rubidium, strontium and the isotopic composition of strontium in ultramafic nodule minerals and host basalts. Geochimica Acta, 38, 207-16.CrossRefGoogle Scholar
Thompson, (R. N.), 1972. Oscillatory and sector zoning in augite from a Vesuvian lava. Carnegie Inst. Washington Year Book 71, 463-70.Google Scholar
Thompson, (R. N.), 1973. Titanian chromite and chromian titanomagnetite from a Snake River Plain basalt, a terrestrial analogue to lunar spinels. Amer. Min. 58, 826-30.Google Scholar
Vincent, (E. A.), 1950. The chemical composition and physical properties of the residual glass of the Kap Daussy tholeiite dike, East Greenland. Min. Mag. 29, 46-62.Google Scholar
Vincent, (E. A.), 1953. Hornblende-lamprophyre dykes of basaltic parentage from the Skaergaard area, East Greenland. Quart. Journ. Geol. Soc. 109, 21-50.CrossRefGoogle Scholar
Wager, (L. R.), 1947. Geological investigations in East Greenland. Part IV. The stratigraphy and tectonics of Knud Rasmussens Land and the Kangerdlugssuaq region. Medd. Grønland, 105 (3).Google Scholar
Wager, (L. R.), and Deer, (W. A.), 1938. A dyke swarm and crustal flexure in East Greenland. Geol. Mag. 75, 39-46.CrossRefGoogle Scholar
White, (R. W.), 1966. Ultramafic inclusions in basaltic rocks from Hawaii. Contr. Min. Petr. 12, 245-314.CrossRefGoogle Scholar
Yagi, (K.) and Onuma, (K.), 1967. The join CaMgSi2O6-CaTiAl2O6 and its bearing on the titanaugites. Journ. Fac. Sci. Hokaido Univ. ser. 4, 13, 463-83.Google Scholar
Yoder, (H. S.) and Tilley, (C. E.), 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journ. Petrology, 3, 342-532.CrossRefGoogle Scholar