Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T03:22:36.289Z Has data issue: false hasContentIssue false

The determination of the Sb/As content in natural tetrahedrite–tennantite and bournonite–seligmannite solid solution series by Raman spectroscopy

Published online by Cambridge University Press:  26 January 2018

A. I. Apopei*
Affiliation:
“Alexandru Ioan Cuza” University of Iaşi, Faculty of Geography and Geology, Department of Geology, 20A Carol I Blv., 700505 Iaşi, Romania
G. Damian
Affiliation:
“Alexandru Ioan Cuza” University of Iaşi, Faculty of Geography and Geology, Department of Geology, 20A Carol I Blv., 700505 Iaşi, Romania Technical University of Cluj-Napoca, North University Center of Baia Mare, 62A Dr. Victor BabeşStreet, 430083 Baia Mare, Romania
N. Buzgar
Affiliation:
“Alexandru Ioan Cuza” University of Iaşi, Faculty of Geography and Geology, Department of Geology, 20A Carol I Blv., 700505 Iaşi, Romania
A. Buzatu
Affiliation:
“Alexandru Ioan Cuza” University of Iaşi, Faculty of Geography and Geology, Department of Geology, 20A Carol I Blv., 700505 Iaşi, Romania
P. Andráš
Affiliation:
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica; Slovakia
S. Milovska
Affiliation:
Geological Institute, Slovak Academy of Sciences, Severná 5, 974 01 Banská Bystrica, Slovakia
*

Abstract

Natural samples containing tetrahedrite–tennantite, bournonite–seligmannite and geocronite–jordanite from the Coranda-Hondol ore deposit, Romania, were investigated by Raman spectroscopy to determine its capability to provide estimates of solid solutions in three common and widespread sulfosalt mineral series. Raman measurements were performed on extended solid solution series (Td1 to Td97, Bnn25 to Bnn93 and Gcn24 to Gcn67, apfu). The tetrahedrite–tennantite and bournonite–seligmannite solid solution series show strong correlations between spectroscopic parameters ( position, relative intensity and shape of the Raman bands) and the Sb/(Sb+As) content ratio, while Raman spectra of geocronite–jordanite shows no evolution of Raman bands. In order to simplify the method used to estimate the Sb/(Sb+As) content ratio in tetrahedrite–tennantite and bournonite–seligmannite series, several linear equations of the first-order polynomial fit were obtained. The results are in good agreement with electron microprobe data. Moreover, a computer program was developed as an analytical tool for a fast and accurate determination of Sb/(Sb+As) content ratio by at least one spectroscopic parameter. These results indicate that Raman spectroscopy can provide direct information on the composition and structure of the tetrahedrite–tennantite and bournonite– seligmannite series.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, J.W., Makovicky, E., Lebech, B. and Møller, S.K. (2008) The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data. Physics and Chemistry of Minerals, 35, 447454.CrossRefGoogle Scholar
Apopei, A.I., Buzgar, N., Damian, G. and Buzatu, A. (2014) The Raman study of weathering minerals from the Coranda-Hondol open pit (Certej gold-silver deposit) and their photochemical degradation products under laser irradiation. Canadian Mineralogist, 52, 10271038.CrossRefGoogle Scholar
Apopei, A.I., Damian, G., Buzgar, N. and Buzatu, A. (2016) Mineralogy and geochemistry of Pb–Sb/Assulfosalts from Coranda-Hondol ore deposit (Romania) – conditions of telluride deposition. Ore Geology Reviews, 72, 857873.CrossRefGoogle Scholar
Arlt, T. and Diamond, L.W. (1998) Composition of tetrahedrite-tennantite and ‘schwazite’ in the Schwaz silver mines, north Tyrol, Austria. Mineralogical Magazine, 62, 801820.CrossRefGoogle Scholar
Biagioni, C., Dini, A., Orlandi, P., Moelo, Y., Pasero, M. and Zaccarini, F. (2016) Lead-antimony sulfosalts from Tuscany (Italy). XX. Members of the jordanitegeocronite series from the Pollone mine, Valdicastello Carducci: occurrence and crystal structures. Minerals, 6, 15; https://doi.org/10.3390/min6010015 CrossRefGoogle Scholar
Birnie, R. and Burnham, C.W. (1976) The crystal structure and extent of solid solution of geocronite. American Mineralogist, 61, 963970.Google Scholar
Buzatu, A., Buzgar, N., Damian, G., Vasilache, V. and Apopei, A.I. (2013) The determination of the Fe content in natural sphalerites by means of Raman spectroscopy. Vibrational Spectroscopy, 68, 220224.CrossRefGoogle Scholar
Buzatu, A., Damian, G., Dill, H.G., Buzgar, N. and Apopei, A.I. (2015) Mineralogy and geochemistry of sulfosalts from Baia Sprie ore deposit (Romania) – new bismuth minerals occurrence. Ore Geology Reviews, 65, 132147.CrossRefGoogle Scholar
Buzatu, A., Damian, G., Buzgar, N., Andráš, P., Apopei, A.I., Maftei, A.E. and Milovska, S. (2017) Structural key features of bismuth and Sb-As sulfosalts from hydrothermal deposits – micro-Raman spectrometry. Vibrational Spectroscopy, 89, 4956.CrossRefGoogle Scholar
Carrillo-Rosúa, J., Morales-Ruano, S., Morata, D., Boyce, A.J., Belmar, M., Fallick,A.E. and Hach-Alí, P.F. (2008) Mineralogy and geochemistry of El Dorado epithermal gold deposit E. Sauce district, central-northern Chile. Mineralogy and Petrology, 92, 341360.CrossRefGoogle Scholar
Chetty, R., Bali, A. and Mallik, R.C. (2015) Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C, 3, 1236412378.CrossRefGoogle Scholar
Ciobanu, C.L., Cook, N.J., Capraru, N., Damian, G. and Cristea, P. (2005) Mineral assemblages from the vein salband at Sacarimb, Golden Quadrilateral, Romania: I. Sulphides and sulphosalts. Geokhimiia, Mineralogiia i Petrologiia, 43, 4755.Google Scholar
Dimitrova, D., Kerestedjian, T., Petrova, M. and Iliev, T. (2007) Compositional variations in the tetrahedritetennantite fahlores and polybasite-pearceite series from the Chiprovtsi Ag-Pb deposit, northwestern Bulgaria. Proceedings of the 2007 Field Workshop of IGCP 486, Espoo, Finland, 26-31.08.2007, 3944.Google Scholar
Dittrich, H., Stadler, A., Topa, D., Schimper, H.-J. and Basch, A. (2009) Progress in sulfosalt research. Physica Status Solidi (a), 206, 10341041.CrossRefGoogle Scholar
Douglass, R.M., Murphy, M.J. and Pabst, A. (1954) Geocronite. American Mineralogist, 39, 908928.Google Scholar
Edenharter, A. and Nowacki, W. (1970) Verfeinerung der Kristallstruktur von Bournonit [(SbS3)2| CuIV 2 PbVIIPbVIII] und von Seligmannit [(AsS3)2| CuIV 2 PbVIIPbVIII]. Zeitschrift für Kristallographie – Crystalline Materials, 131, 397417.CrossRefGoogle Scholar
Fadda, S., Fiori, M. and Grillo, S.M. (2005) Chemical variations in tetrahedrite-tennantite minerals from the Furtei epithermal Au deposit, Sardinia, Italy: Mineral zoning and ore fluids evolution. Geochemistry, Mineralogy and Petrology, 43, 7984.Google Scholar
Foit, F.F. and Ulbricht, M.E. (2001) Compositional variation in mercurian tetrahedrite-tennantite from the epithermal deposits of the Steens and Pueblo Mountains, Harney County, Oregon. Canadian Mineralogist, 39, 819830.CrossRefGoogle Scholar
Gemmell, J.B., Zantop, H. and Birnie, R.W. (1989) Silver sulfosalts of the Santo-Nino vein, Fresnillo district, Zacatecas, Mexico. Canadian Mineralogist, 27, 401418.Google Scholar
Hackbarth, C.J. and Petersen, U. (1984) A fractional crystallization model for the deposition of argentian tetrahedrite. Economic Geology, 79, 448460.CrossRefGoogle Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. Canadian Mineralogist, 24, 385397.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1987) Effect of substitutions on the cell dimensions of tetrahedrite. Canadian Mineralogist, 25, 237244.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1988) Crystal-chemistry of tetrahedrite. American Mineralogist, 73, 389397.Google Scholar
Karup-Møller, S. and Makovicky, E. (2003) Exploratory studies of element substitutions in synthetic tetrahedrite. Part V. Mercurian tetrahedrite. Neues Jahrbuch für Mineralogie, Abhandlungen, 179, 7383.CrossRefGoogle Scholar
Kharbish, S. (2011) Raman spectroscopic investigations of some Tl-sulfosalt minerals containing pyramidal (As,Sb)S3 groups. American Mineralogist, 96, 609616.CrossRefGoogle Scholar
Kharbish, S. (2016) Micro-Raman spectroscopic investigations of extremely scarce Pb-As sulfosalt minerals: baumhauerite, dufrénoysite, gratonite, sartorite, and seligmannite. Journal of Raman Spectroscopy, 47, 13601366.CrossRefGoogle Scholar
Kharbish, S. and Jeleň, S. (2016) Raman spectroscopy of the Pb-Sb sulfosalt minerals: boulangerite, jamesonite, robinsonite and zinkenite. Vibrational Spectroscopy, 85, 157166.CrossRefGoogle Scholar
Kharbish, S., Götzinger, M. and Beran, A. (2007a) Compositional variations of fahlore group minerals from Austria. Austrian Journal of Earth Science, 100, 4452.Google Scholar
Kharbish, S., Libowitzky, E. and Beran, A. (2007b) The effect of As-Sb substitution in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite solid solutions. European Journal of Mineralogy, 19, 567574.Google Scholar
Kharbish, S., Libowitzky, E. and Beran, A. (2009) Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. European Journal of Mineralogy, 21, 325333.CrossRefGoogle Scholar
Kharbish, S., Giester, G. and Beran, A. (2010) Contribution to the crystal structures of tennantite and bournonite. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 159166.CrossRefGoogle Scholar
Krismer, M., Vavtar, F., Tropper, P., Kaindl, R. and Sartory, B. (2011a) The chemical composition of tetrahedrite-tennantite ores from the prehistoric and historic Schwaz and Brixlegg mining areas (North Tyrol, Austria). European Journal of Mineralogy, 23, 925936.Google Scholar
Krismer, M., Vavtar, F., Tropper, P., Sartory, B. and Kaindl, R. (2011b) Mineralogy, mineral chemistry and petrology of the Ag-bearing Cu-Fe-Pb-Zn sulfide mineralizations of the Pfunderer Berg (South Tyrol, Italy). Austrian Journal of Earth Sciences, 104, 3648.Google Scholar
Lafuente, B., Downs, R., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Highlights in Mineralogical Crystallography, 130.CrossRefGoogle Scholar
Makovicky, E. (1994) Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I. Substitution by Fe,, Zu,, Co,, Ni,, Mn,, Cr V. and Pb. Unit cell parameter changes on substitution and the structural role of Cu*O2*O+. Neues Jahrbuch für Mineralogie, Abhandlungen, 167, 89123.Google Scholar
Makovicky, E. and Skinner, B.J. (1978) Studies of the sulfosalts of copper. VI. Low-temperature exsolution in synthetic tetrahedrite solid solution, Cu12+xSb4+yS13. Canadian Mineralogist, 16, 611623.Google Scholar
Makovicky, E., Tippelt, G., Forcher, K., Lottermoser, W., Karup-Moller, S. and Amthauer, G. (2003) Mössbauer study of Fe-bearing synthetic tennantite. Canadian Mineralogist, 41, 11251134.CrossRefGoogle Scholar
Makovicky, E., Karanovic, L., Poleti, D., Balic-Zunic, T. and Paar,W.H. (2005) Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13. Canadian Mineralogist, 43, 679688.CrossRefGoogle Scholar
Miller, J.W. and Craig, J.R. (1983) Tetrahedrite tennantite series compositional variations in the Cofer Deposit, Mineral District, Virginia. American Mineralogist, 68, 227234.Google Scholar
Minceva-Sukarova, B., Jovanovski, G., Makreski, P., Soptrajanov, B., Griffith, W., Willis, R. and Grzetic, I. (2003) Vibrational spectra of MIMIII S2 type synthetic minerals (MI = Tl or Ag and MIII = As or Sb). Journal of Molecular Structure, 651653, 181189.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balic-Žunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 762.CrossRefGoogle Scholar
Mohanan, K., Sharma, S.K. and Bishop, F.C. (1993) A Raman spectral study of forsterite-monticellite solid solutions. American Mineralogist, 78, 4248.Google Scholar
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Chemistry. Wiley, New York.Google Scholar
Pattrick, R.A.D. and Hall, A.J. (1983) Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites. Mineralogical Magazine, 47, 441451.CrossRefGoogle Scholar
Repstock, A., Voudouris, P., Zeug, M., Melfos, V., Zhai, M., Li, H., Kartal, T. and Matuszczak, J. (2015) Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, southern Bulgaria and northern Greece. Mineralogy and Petrology, 110, 103123.CrossRefGoogle Scholar
Rividi, N., van Zuilen, M., Philippot, P., Menez, B., Godard, G. and Poidatz, E. (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology, 10, 293309.CrossRefGoogle ScholarPubMed
Sack, R.O. and Ebel, D.S. (1993) As-Sb exchange energies in tetrahedrite–tennantite fahlores and bournonite–seligmannite solid solutions. Mineralogical Magazine, 57, 635642.CrossRefGoogle Scholar
Sack, R.O. and Loucks, R.R. (1985) Thermodynamic properties of tetrahedrite-tennantites – Constraints on the interdependence of the Ag-reversible-Cu, Fereversible- Zn, Cu-reversible-Fe, and As-reversible- Sb exchange-reactions. American Mineralogist, 70, 12701289.Google Scholar
Skinner, B.J., Luce, F.D. and Makovicky, E. (1972) Studies of the sulfosalts of copper III; Phases and phase relations in the system Cu-Sb-S. Economic Geology, 67, 924938.CrossRefGoogle Scholar
Takéuchi, Y. and Haga, N. (1969) On the crystal structures of seligmannite, PbCuAsS3, and related minerals. Zeitschrift für Kristallographie, 130, 254260.CrossRefGoogle Scholar
Vakh, A.S., Avchenko, O.V., Goryachev, N.A., Gvozdev, V.I. and Karabtsov, A.A. (2016) New data on the composition of jordanite–geocronite Pb–Sb–As sulfosalts at the Berezitovoe deposit (Upper Amur region, Russia). Doklady Earth Sciences, 467, 402407.CrossRefGoogle Scholar
Vassileva, R.D., Atanassova, R. and Kouzmanov, K. (2013) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria. Mineralogy and Petrology, 108, 515531.CrossRefGoogle Scholar
Wang, A., Han, J.Y., Guo, L.H., Yu, J.Y. and Zeng, P. (1994) Database of standard Raman spectra of minerals and related inorganic crystals. Applied Spectroscopy, 48, 959968.CrossRefGoogle Scholar
Wu, I. and Petersen, U. (1977) Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru. Economic Geology, 72, 9931016.CrossRefGoogle Scholar
Wu, I.J. and Birnie, R.W. (1977) The bournoniteseligmannite solid solution. American Mineralogist, 62, 10971100.Google Scholar
Wuensch, B.J. (1964) The crystal structure of tetrahedrite, Cu12Sb4S18. Zeitschrift für Kristallographie – Crystalline Materials, 119, 437453.CrossRefGoogle Scholar