Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T17:04:18.683Z Has data issue: false hasContentIssue false

Crystal-structure refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to the geochemistry of zinc in peralkaline environments

Published online by Cambridge University Press:  05 July 2018

P. C. Piilonen*
Affiliation:
Earth Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada
I. V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Borobievy Gory, 119992 Moscow, Russia
M. Back
Affiliation:
Natural History Department, Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
T. Steede
Affiliation:
Natural History Department, Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
R. A. Gault
Affiliation:
Earth Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada
*

Abstract

The chemistry and crystal structure of a unique Zn-rich kupletskite: (K1.55Na0 .21Rb0.09Sr0.01)Σ1.86(Na0.82Ca0.18)Σ1.00(Mn4.72Zn1.66Na0.41Mg0.12)Σ7.00 (Ti1.85Nb0.11Hf0.03)Σ1.99(Si7.99Al0.12)Σ8.11O26 (OH)4(F0.77OH0.23)Σ1.00, from analkalin e pegmatite at Mont Saint-Hilaire, Quebec, Canada has been determined. Zn-rich kupletskite is triclinic, , a = 5.3765(4), b = 11.8893(11), c = 11.6997(10), α = 113.070(3), β = 94.775(2), γ = 103.089(3), R1 = 0.0570 for 3757 observed reflections with Fo > 4σ(Fo). From the single-crystal X-ray diffraction refinement, it is clear that Zn2+ shows a preference for the smaller, trans M(4) site (69%), yet is distributed amongst all three octahedral sites coordinated by 4 O2− and 2 OH [M(2) 58% and M(3) 60%]. Of note is the lack of Zn in M(1), the larger and least-distorted of the four crystallographic sites, with an asymmetric anionic arrangement of 5 O2− and 1 OH. The preference of Zn for octahedral sites coordinated by mixed ligands (O and OH) is characteristic of its behaviour in alkaline systems, in contrast to granitic systems where Zn tends to favour [4]-coordinated, OH− and H2O-free sites with only one ligand species (O, S, Cl, B, I). In alkaline systems, [4]Zn is only present in early sphalerite or in late-stage zeolite-like minerals. The bulk of Zn in alkaline systems is present as discrete [6]Zn phases such as members of the astrophyllite, labuntsovite, milarite and nordite groups, a result of the formation of network-forming complexes inthe low-temperature, low-fS2, high-alkalinity and highly oxidizing systems.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agakhanov, A. A., Pautov, L. A., Sokolova, E. V., Hawthorne, F. C. and Belakovskiy, D. I. (2003) Telyushenkoite, CsNa6[Be2Al3Si15O39F2] – a new cesium mineral of the leifite group. New Data on Minerals, 38, 58.Google Scholar
Anderson, T. and Sørensen, H. (1993) Crystallization and metasomatism of nepheline syenite xenoliths in quartz-bearing intrusive rocks in the Permian Oslo rift, SE Norway. Norsk Geologisk Tidsskrift, 73, 250266.Google Scholar
Bailey, J. C., Gwozdz, R., Rose-Hansen, J. and Sorensen, H. (2001) Geochemical overview of the Ilimaussaq complex, South Greenland. Geological Survey of Denmark and Greenland Bulletin. CrossRefGoogle Scholar
Brese, N. E. and O'Keefe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brooks, C. K., Engell, J., Larsen, L. M. and Pedersen, A. K. (1982) Mineralogy of Werner Bjerge alkaline complex, East Greenland. Meddelelser om Grønland, Geoscience, 7, 38pp.Google Scholar
Christiansen, C. C., Johnsen, O. and Ståhl, K. (1998) Crystal structure of kupletskite from the Kangerdlugssuaq intrusion, East Greenland. Neues Jahrbuch für Mineralogie Monatshefte, 6, 253264.Google Scholar
Chukanov, N. V., Pekov, I. V., Zadov, A. E., Azarova, Yu.V. and Semenov, E. I. (2002) Kuzmenkoite-Zn, K2Zn(Ti,Nb)4(Si4O12)2(OH,O)4·6-8H2O, a new labuntsovite-group mineral from the Lovozero massif, Kola peninsula. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 131, 2, 4550.Google Scholar
Chukhrov, F. V. (editor) (1972) Minerals Reference Book, Vol. III, 1. Nauka Publishing, Moscow (in Russian).Google Scholar
Cromer, D. T. and Liberman, D. (1970) Relativistic calculation of anomalous scattering factors for X-rays. Journal of Chemical Physics, 53, 18911898.CrossRefGoogle Scholar
DeMark, R. S. (1984) Minerals of Point of Rocks, New Mexico. Mineralogical Record, 15, 149156.Google Scholar
Eby, G. N. (2004) Petrology, geochronology, mineralogy and geochemistry of the Beemerville alkaline complex, northern New Jersey. Pp. 5268 in: Neoproterozoic, Paleozoic and Mesozoic Intrusive Rocks of Northern New Jersey and Southeastern New York (Puffer, J. H. and Volkert, R. A., editors). 21st Annual Meeting, Geological Association of New Jersey, Mahwah, NJ.Google Scholar
Eby, G. N., Woolley, A. R., Din, V. and Platt, G. (1998) Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39, 14051424.CrossRefGoogle Scholar
Ercit, T. S. and Hawthorne, F. C. (1995) Murataite, a UB12 derivative structure with condensed Keggin molecules. The Canadian Mineralogist, 33, 12231229.Google Scholar
Ercit, T. S. and van Velthuisen, J. (1994) Gaultite, a new zeolite-like mineral species from Mont Saint-Hilaire, Quebec, and its crystal structure. The Canadian Mineralogist, 32, 855863.Google Scholar
Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. MacMillian Publishing Company, New York.Google Scholar
Ferraris, G., Prencipe, M., Pautov, L. A. and Sokolova, E. V. (1999) The crystal structure of darapiosite and a comparison with Li- and Zn-bearing minerals of the milarite group. The Canadian Mineralogist, 37, 769774.Google Scholar
Flohr, M. J. K. and Ross, M. (1990) Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites. Lithos, 26, 6798.CrossRefGoogle Scholar
Gault, R. A., Ercit, T. S., Grice, J. D. and Van Velthuizen, J. (2004) Manganokukisvumite: a new mineral species from Mont Saint-Hilaire, Quebec. The Canadian Mineralogist, 42, 781785.CrossRefGoogle Scholar
Ghose, S. (1964) The crystal structure of hydrozincite, Zn6(OH)6(CO3)2 . Acta Crystallographica, 17, 10511057.CrossRefGoogle Scholar
Greenwood, N. N. and Earnshaw, A. (1984) Chemistry of the Elements. Pergamon Press, Oxford, UK, pp. 13951422.Google Scholar
Grey, I. E. and Gatehouse, B. M. (1978) The crystal structure of landauite, Na[MnZn2(Ti,Fe)6Ti12]O38 . The Canadian Mineralogist, 16, 6368.Google Scholar
Hassan, I. and Grundy, H. D. (1985) The crystal structures of helvite group minerals, (Mn,Fe,Zn)8 (Be6Si6O24)S2 . American Mineralogist, 70, 186192.Google Scholar
Horváth, L. and Gault, R. A. (1990) The mineralogy of Mont Saint-Hilaire, Québec. Mineralogical Record, 21, 284359.Google Scholar
Kadar, M. (1984) Mineralogie et implications petrologiques des pegmatites des syenites nepheliniques du massif alcalin du Tamazeght (Haut Atlas de Midelt, Maroc). These 3eme cycle, Université Paul Sabatier, Toulouse, France.Google Scholar
Kostyleva-Labuntsova, E. E., Borutskii, B. E., Sokolova, M. N., Shlyukova, Z. V., Dorfman, M. D., Dudkin, O. B. and Kozyreva, L. V. (1978) Mineralogy of the Khibiny Massif. Vol. 2. Nauka Publishing, Moscow (in Russian).Google Scholar
Kovalenko, V. I. (1977) The geochemical trend in the evolution of alkali granite magmas. Geochemica International, 6, 4153.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Markl, G. (2001) A new type of silicate liquid immiscibility in peralkaline nepheline syenites (lujavrites) of the Ilimaussaq complex, South Greenland. Contributions to Mineralogy and Petrology, 141, 458472.CrossRefGoogle Scholar
McDonald, W. S. and Cruickshank, D. W. J. (1967) Refinement of the structure of hemimorphite. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 124, 180191.CrossRefGoogle Scholar
Merlino, S., Pasero, M. and Ferro, O. (2000) The crystal structure of kukisvumite, Na6ZnTi4(Si2O6)4O4·4(H2O). Zeitschrift für Kristallographie, 215, 352356.Google Scholar
Pekov, I. V. (2002) New zincian minerals and genetic aspect of the crystal chemistry of zinc in hyperalkaline pegmatites. Abstract. New Approach to the Study and Description of Minerals and Mineral Formation Processes. Moscow, pp. 3537.Google Scholar
Pekov, I. V. (2005) Genetic Mineralogy and Crystal Chemistry of Rare Elements in High-Alkaline Postmagmatic Systems. D.Sc. thesis, Moscow State University.Google Scholar
Pekov, I. V. and Podlesnyi, A. S. (2004) Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrothermalites. Mineralogical Almanac, 7, 1164.Google Scholar
Pekov, I. V., Chukanov, N. V., Kononkova, N. N., Belakovskiy, D. I., Pushcharovsky, D.Yu. and Vinogradova, S. A. (1998) Ferronordite-(Na), Na3SrCeFeSi6O17, and manganonordite-(Na), Na3SrCeMnSi6O17, new minerals from Lovozero massif, Kola peninsula. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 127, 4857.Google Scholar
Pekov, I. V., Chukanov, N. V., Turchkova, A. G. and Grishin, V. G. (2001) Ferronordite-(La), Na3Sr (La,Ce)FeSi6O17 – a new mineral of the nordite group from Lovozero massif, Kola Peninsula. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 130, 5358.Google Scholar
Pekov, I. V., Chukanov, N. V., Zadov, A. E., Krivovichev, S. V., Azarova, Yu.V., Burns, P. C. and Schneider, J. (2002) Organovaite-Zn, K2Zn(Nb,Ti)4(Si4O12)2 (O,OH)4·6H2O, a new mineral of the labuntsovite group. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 131, 2934.Google Scholar
Pekov, I. V., Chukanov, N. V., Zadov, A. E., Rozenberg, K. A. and Rastsvetaeva, R. K. (2003) Alsakharovite-Zn, NaSrKZn(Ti,Nb)4[Si4O12]2(O,OH)4·7H2O, a new mineral of the labuntsovite group from Lovozero massif, Kola Peninsula. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 132, 5258.Google Scholar
Pekov, I. V., Chukanov, N. V., Shilov, G. V., Kononkova, N. N. and Zadov, A. E. (2004) Lepkhenelmite-Zn, Ba2Zn(Ti,Nb)4[Si4O12]2(O,OH)4·7H2O, a new mineral of the labuntsovite group and its crystal structure. Zapiski Vserossiyskogo Mineralogicheskogo Mineralogicheskogo Obshchestva, 133, 4958 Google Scholar
Piilonen, P. C., Lalonde, A. E., McDonald, A. M. and Gault, R. A. (2000) Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Québec, Canada: Description and crystal structure. The Canadian Mineralogist, 38, 627639.CrossRefGoogle Scholar
Piilonen, P. C., McDonald, A.M. and Lalonde, A. E. (2001) Kupletskite polytypes from the Lovozero massif, Kola Peninsula, Russia: Kupletskite-1A and kupletskite-Ma2b2c . European Journal of Mineralogy, 13, 973984.CrossRefGoogle Scholar
Piilonen, P. C., Lalonde, A. E., McDonald, A. M., Gault, R. A. and Larsen, A. O. (2003 a) Insights into astrophyllite group minerals I: Nomenclature, composition and development of a standardized general formula. The Canadian Mineralogist, 42, 126.CrossRefGoogle Scholar
Piilonen, P. C., McDonald, A. M. and Lalonde, A. E. (2003 b) Insights into the astrophyllite group II: Crystal chemistry. The Canadian Mineralogist, 42, 2754.CrossRefGoogle Scholar
Raade, G. and Haug, J. (1982) Gjerdingen-Fundstelle seltener Mineralien in Norwegen. Lapis, 7, 915.Google Scholar
Rule, A. C. and Radke, F. (1988) Baileychlore, the Zn end member of the trioctahedral chlorite series. American Mineralogist, 73, 135139.Google Scholar
Scott, S. D. and Barnes, H. L. (1972) Sphalerite-wurtzite equilibria and stoichiometry. Geochimica et Cosmochimica Acta, 36, 12751295.CrossRefGoogle Scholar
Semenov, E. I. (1956) Kupletskite – a new mineral of the astrophyllite group. Doklady Akademii Nauk SSSR, 108, 933936.Google Scholar
Sheldrick, G. M. (1993) SHELXL-93. Program for the refinement of crystal structures. University of Göttingen, Germany.Google Scholar
Shi, N., Ma, Z., Li, G., Yamnova, N. A. and Pushcharovsky, D. Y. (1998) Structure refinement of monoclinic astrophyllite. Acta Crystallographica, B54, 109114.CrossRefGoogle Scholar
Sokolova, E. V., Rybakov, V. B. and Pautov, L.A (1999) Crystal structure of shibkovite. Doklady Akadamii Nauk, 369, 378380.Google Scholar
Sveshnikova, E. V., Semenov, E. I. and Khomyakov, A. P. (1976) Zaangarskii Alkaline Massif, its Rocks and Minerals. Nauka Publishing, Moscow (in Russian).Google Scholar
Valter, A. A., Eryomenko, G. K. and Leesenko, T. A. (1965) Kupletskite from the alkaline rocks of the Azov Region. Russian Physics Journal, 19, 248252.Google Scholar
Wedepohl, K. H. (1969) Handbook of Geochemistry I. Springer-Verlag, Berlin, 30A30O.CrossRefGoogle Scholar
Woolley, A. R. and Platt, G. R. (1988) The peralkaline nepheline syenites of the Junguni intrusion, Chilwa province, Malawi. Mineralogical Magazine, 52, 425433.CrossRefGoogle Scholar