Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:14:58.676Z Has data issue: false hasContentIssue false

The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices

Published online by Cambridge University Press:  02 January 2018

M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Y. A. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, USA

Abstract

The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, cubic, F4̄3m, a = 9.521(6) Å V = 863.1(1.6) Å3, Z = 4, was solved by direct methods and refined to an R 1 index of 2.1% based on 167 unique observed reflections collected on a three-circle rotating-anode (MoKα X-radiation) diffractometer equipped with multilayer optics and an APEX-II detector. In the structure of gianellaite, nitrogen-centred (NHg4)5+ tetrahedra share all corners to form a framework of tetrahedra with an ordered arrangement of interstitial (SO4)2– tetrahedra that show strong orientational disorder. Infrared spectroscopy in the principal O–H stretching region shows peaks at ∼3300 and 1600 cm–1, indicating the presence of (H2O), the position(s) of which could not be discerned in difference-Fourier maps.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airoldi, R. and Magnano, G. (1967) Sulla struttura del solfato (di)mercurioammonico. Rassegna Chimica, 5, 181189.Google Scholar
Borisov, S.V., Magarill, S.A., Pervukhina, N.V. and Peresypkina, E.V. (2005) Crystal chemistry of mercury oxo- and chalcohalides. Crystallography Reviews, 11, 87123.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2003) The crystal structure of vasilyevite, (Hg2)2+10O6I3(Br,Cl)3(CO3). The Canadian Mineralogist, 41, 11731181.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2009) The crystal structure of tedhadleyite, Hg2+Hg1+10 O4I2(Cl,Br)2, from the Clear Creek Claim, San Benito County, California. Mineralogical Magazine, 73, 227—234.CrossRefGoogle Scholar
Cooper, M.A., Abdu, Y.A., Hawthorne, F.C. and Kampf, A.R. (2013) The crystal structure of comancheite, Hg2 Nli(OH,NH2)4(Cl,Br)34, and crystal-chemical and spectroscopic discrimination of N3∼ and O2∼ anions in Hg + compounds. Mineralogical Magazine, 77, 32173237.CrossRefGoogle Scholar
Filatov, S.K., Semenova, T.F. and Vergasova, L.P. (1992) Types of polymerization of [OCu4]6+ tetrahedra in compounds with ‘additional’ oxygen atoms. Proceedings of the USSR Academy of Sciences, 322, 536539.[in Russian].Google Scholar
Giester, G., Mikenda, W. and Pertlik, F. (1996) Kleinite from Terlingua, Brewster County, Texas: investiga—tions by single crystal X-ray diffraction, and vibra-tional spectroscopy. Neues Jahrbuch für Mineralogie, Monatshefte, 1996, 4956.Google Scholar
Hawthorne, F.C. (2014) The Structure Hierarchy Hypothesis. Mineralogical Magazine, 78, 957—1027.CrossRefGoogle Scholar
Hawthorne, F.C., Cooper, M.A. and Sen Gupta, P.K. (1994) The crystal structure of pinchite, Hg5Cl2O4. American Mineralogist, 79, 1199—1203.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1—112.in: Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Krivovichev, S.V. (2004) Combinatorial topology of salts of inorganic oxoacids: zero-, one- and two-dimensional units with corner-sharing between coordination polyhedra. Crystallography Reviews, 10, 185—232.CrossRefGoogle Scholar
Krivovichev, S.V. (2008) Structural Crystallography of Inorganic Oxysalts. International Union of Crystallography Monographs on Crystallography, 22. Oxford University Press, UK.Google Scholar
Krivovichev, S.V. and Filatov, S.K. (1999a) Structural principles for minerals and inorganic compounds containing anion-centered tetrahedra. American Mineralogist, 84, 10991106.CrossRefGoogle Scholar
Krivovichev, S.V. and Filatov, S.K. (1999b) Metal arrays in structural units based on anion-centered metal tetrahedra. Acta Crystallographica, B55, 664—676.Google Scholar
Krivovichev, S.V., Filatov, S.K. and Semenova, T.F. (1998a) Types of cationic complexes on the base of oxocentered tetrahedra [OM4] in crystal structures of inorganic compounds. Russian Chemical Reviews , 67, 137155.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K., Semenova, T.F. and Rozhdestvenskaya, I.V. (1998b) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Zeitschrift für Kristallographie, 213, 645649.Google Scholar
Krivovichev, S.V., Filatov, S.K. and Burns, P.C. (2002) The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. The Canadian Mineralogist, 40, 11851190.CrossRefGoogle Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Lipscomb, W.N. (1951) The structure of Millon's Base and its salts. Acta Crystallographica, 4, 156158.CrossRefGoogle Scholar
Lund, H., Oeckler, O., Schroeder, T., Schulz, A. and Villinger, A. (2013) Mercury azides and the azide of Millon's base. Angewandite Chemie. International Edition, 52, 1090010904.CrossRefGoogle ScholarPubMed
Magarill, S.A., Romanenko, G.V., Pervukhina, N.V., Borisov, S.V. and Palchik N.A. (2000) Oxocentered polycationic complexes — An alternative approach to crystal-chemical investigation of the structure of natural and synthetic mercury oxosalts. Journal of Structural Chemistry, 41, 96105.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Criddle, A.J., Stirling, J.A.R.. and Dunning, G.E. (2002) Tedhadleylite, Hg2+Hg1+10O4I2(Cl,Br)2, a new mineral from the Clear Creek Claim, San Benito County, California. The Canadian Mineralogist, 40, 909914.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Gault, R.A., Grice, J.D. and Nikischer, A.J. (2003a) Artsmithite, a new Hg1+—Al phosphate-hydroxide from the Funderburk Prospect, Pike County, Arkansas U.S.A. The Canadian Mineralogist, 41, 721725.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Stirling, J. A.R., Paar, W.H., Stanley, C.J., Dunning, G.E. and Burns, P.C. (2003b) Vasilyevite, (Hg2)102+O6I3Br2Cl (CO3), a new mineral species from the Clear Creek Claim, San Benito, County, California. The Canadian Mineralogist, 41, 11671172.CrossRefGoogle Scholar
Roberts, A.C., Gault, R.A., Paar, W.H., Cooper, M.A., Hawthorne, F.C., Burns, P.C., Cisneros, S. and Foord, E.E. (2005) Terlinguacreekite, Hg32+ O2Cl2, a new mineral species from the Perry Pit, Mariposa Mine, Terlingua Mining District, Brewster County, Texas U.S.A.. The Canadian Mineralogist, 43, 10551060.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie, 223, 114125.Google Scholar
Switzer, G., Foshag, W.F., Murata, K.J. and Fahey, J.J. (1953) Re-examination of mosesite. American Mineralogist, 38, 12251234.Google Scholar
Tunell, G., Fahey, J.J., Daugherty, F.W. and Gibbs, G.V. (1977) Gianellaite, a new mercury mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 1977, 119131.Google Scholar