Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T07:27:23.212Z Has data issue: false hasContentIssue false

57Fe-Mössbauer investigation on garnets from the Ivrea-Verbano Zone

Published online by Cambridge University Press:  05 July 2018

Simona Quartieri
Affiliation:
Istituto di Mineralogia e Petrologia, Universitá di Modena, via S. Eufemia 19, 1-41100 Modena, Italy
Gilberto Artioli
Affiliation:
Istituto di Mineralogia e Petrologia, Universitá di Modena, via S. Eufemia 19, 1-41100 Modena, Italy
Antonio Deriu
Affiliation:
Dipartimento di Fisica, Universitá di Parma, Viale delle Scienze, 1-43100 Parma, Italy
Pier Paolo Lottici
Affiliation:
Dipartimento di Fisica, Universitá di Parma, Viale delle Scienze, 1-43100 Parma, Italy
Gianni Antonioli
Affiliation:
Dipartimento di Fisica, Universitá di Parma, Viale delle Scienze, 1-43100 Parma, Italy

Abstract

A Mössbauer investigation has been carried out on garnets from the Ivrea-Verbano zone and the results are compared with those obtained on the same samples by X-ray absorption spectroscopy (XAS). The problem addressed is the precise structural characterisation of the local environment of iron in garnets with Fe/Ca ratio variable between ∼3.0 and ∼18.0. Ferric iron is octahedrally coordinated and ferrous iron is in the dodecahedral site in all the samples. Mössbauer results are in agreement with those obtained by XAS and show that, at least in the compositional range of the garnets examined (0.1-0.5 calcium atoms p.f.u.), the iron environment is not significantly modified by the larger calcium cations sharing the same dodecahedral site. It is confirmed that the Mössbauer technique is more sensitive than XAS in detecting low percentages of iron, especially when the cation is present in more than one oxidation state and coordination number.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Dipartimento di Scienze della Terra, Sez. Mineralogia, Università di Milano, Milano, Italy.

References

Artioli, G. and Geiger, C. A. (1992) Fe in pumpellyite-group minerals: a combined diffraction and spectroscopy study. Phys. Chem. Minerals (in press).Google Scholar
Artioli, G. Sacchi, M., Balerna, A., Burattini, E. and Simeoni, S. (1991) XANES studies of Fe in pumpel-lyite-group minerals. Neues Jahrb. Mineral., Mh., 413-21.Google Scholar
Amthauer, G., Annersten, H. and Hafner, S. S. (1976) The Mössbauer spectrum of S7Fe in silicate garnets. Zeit. für Kristall., 143, 1455.Google Scholar
Basso, R., Della Giusta, A. and Zefiro, L. (1981) A crystal chemical study of a Ti-containing hydrogarnet. Neues Jahrb. Mineral., Mh., 230-6.Google Scholar
Brown, G. E., Calas, G., Waychunas, G. A. and Petiau, J. (1988) X-ray absorption spectroscopy and its applications in mineralogy and geochemistry. In: Spectroscopic methods in mineralogy and geology (F. C. Hawthorne, ed.), pp. 431-512. Min. Soc. Amer. Reviews in Mineralogy, vol. 18.Google Scholar
De Grave, E. and Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fraction Phys. Chem. Minerals, 18, 337–42.Google Scholar
Geiger, C. A., Armbruster, Th., Jiang, K., Lager, G. A., Lottermoser, W. and Amthauer, G. (1992) A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Goldanskii-Karyagin effect. Ibid., 19, 121-6.Google Scholar
Gonser, K. (1975) From a strange effect to Mössbauer spectroscopy. In Topics in Applied Physics. vol. 5: Mössbauer Spectroscopy. (K. Gonser, ed.) Springer, Berlin, Heidelberg, News York, pp. 151.Google Scholar
Luth, R. W., Virgo, D., Boyd, F. R., and Wood, B. J. (1990) Ferric iron in mantle-derived garnets. Implications for thermobarometry and for the oxidation state of the mantle. Contrib. Miner. Petrol., 104, 5672.Google Scholar
Mazzucchelli, M., Rivalenti, G., Vannucci, R., Bottazzi, P., Ottolini, L., Hofmann, A. W., Sinigoi, S., and Demarchi, G. (1992) Trace element distribution between clinopyroxene and garnet in gabbroic rocks of deep crust: an ion microprobed study. Geochim. Cosmochim. Acta, 56, 2371–85.Google Scholar
Murad, E. and Wagner, F. E. (1987) The Mössbauer spectrum of almandine. Phys. Chem. Minerals, 14, 264–9.Google Scholar
Parenti, M. (1991) Petrologia di magmi ibridi in crosta profonda: equilibrio ed elementi in tracce in clinopir-osseno e granato. Degree thesis, Univ. of Modena.Google Scholar
Quartieri, S., Antonioli, G., Lottici, P. P., and Artioli, G. (1993) X-ray absorption spectroscopy investi-gation at Fe K-edge of natural garnets from Ivrea-Verbano zone. Mineral. Mag., 57, 249–56.Google Scholar
Rivalenti, G., Rossi, A., Siena, F., and Sinigoi, S. (1984) The layered series of the Ivrea-Verbano igneous complex. Western Alps, Italy. Tschermaks Mineral. Petrogr. Mitt., 33, 7799.Google Scholar
Voshage, H., Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S., Raczek, I., and Demarchi, G. (1990) Isotopic evidence from the Ivrea zone for a hybrid lower crust formed by magmatic underplating. Nature, 347, 731–6.Google Scholar