Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T10:16:08.706Z Has data issue: false hasContentIssue false

Experimental investigations and FEM simulations of parameters influencing the Fe-(wt.3%)Si shearing process

Published online by Cambridge University Press:  06 November 2012

Haykel Marouani*
Affiliation:
Universitéde Monastir, École Nationale d’Ingénieurs de Monastir, Laboratoire de Génie Mécanique, Avenue Ibn El Jazzar, 5019 Monastir, Tunisie
Mohamed Rachik
Affiliation:
Laboratoire Roberval, UMR CNRS 6253, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France
Eric Hug
Affiliation:
Laboratoire de Cristallographie et Sciences des Matériaux, UMR CNRS 6508, Université de Caen, 6 Bd Maréchal Juin, 14050 Caen 4, France
*
a Corresponding author: [email protected]
Get access

Abstract

The sheet metal forming by shearing is one of the most used processes in industries. The reliability of the obtained parts depends on geometrical parameters (shape of the tools, punch radius, clearances, velocity...) and materials properties (metal behavior, friction...). In this paper, two experimental parameters are investigated: the punch – die clearance and the punch velocity. A 0.65 mm thickness sheet of a non-oriented full-process Fe-(wt.3%)Si is used. The analyses are done through the load-stroke curve and the height repartition of different defects on the part edge. A numerical approach is proposed to simulate the shearing process and to handle the ductile fracture (which is performed using Abaqus/Explicit software). This work is based on a non-iterative explicit algorithm combined with a mesh adaptivity method (Arbitrary Lagrangian Eulerian formulation). The Gurson–Tvergaard–Needleman model is then used to describe the cut edge profile occurring during the process.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, S., Bhushan, B., Katsube, N., Three-dimensional finite element analysis of the magnetic tape slitting process, J. Mater. Process. Technol. 170 (2005) 7188 CrossRefGoogle Scholar
Hambli, R., Guerin, F., Application of a neural network for optimum clearance prediction in sheet metal blanking processes, Finite Elem. Anal Des. 39 (2003) 10391052 CrossRefGoogle Scholar
Hernández, J.J., Franco, P., Estrems, M., Faura, F., Modelling and experimental analysis of the effects of tool wear on form errors in stainless steel blanking, J. Mater. Process. Technol. 180 (2006) 143150 CrossRefGoogle Scholar
Jacobs, O., Dalock, W., Demenus, H., Shear cutting of thermoplastic foils, Polym. Tes. 22 (2003) 579587 CrossRefGoogle Scholar
Thipprakmas, S., Rojananan, S., Paramaputi, P., An investigation of step taper-shaped punch in piercing process using finite element method, J. Mater. Process. Technol. 197 (2008) 132139 CrossRefGoogle Scholar
Lemiale, V., Chambert, J., Picart, P., Description of numerical techniques with the aim of predicting the sheet metal blanking process by FEM simulation, J. Mater. Process. Technol. 209 (2009) 27232734 CrossRefGoogle Scholar
Vaz, J.M., Bressan, J.D., A computational approach to blanking processes, J. Mater. Process. Technol. 125-126 (2002) 206212 CrossRefGoogle Scholar
Klingenberg, W., Singh, U.P., Comparison of two analytical models of blanking and proposal of a new model, Int. J. Mach. Tools Manuf. 45 (2005) 519527 CrossRefGoogle Scholar
Maiti, S.K., Ambekar, A.A., Singh, U.P., Date, P.P., Narasimhan, K., Assessment of influence of some process parameters on sheet metal blanking, J. Mater. Process. Technol. 102 (2000) 249256 CrossRefGoogle Scholar
Taupin, E., Breitling, J., Wu, W.T., Atlan, T., Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, J. Mater. Process. Technol. 59 (1996) 6878 CrossRefGoogle Scholar
Brokken, D., Brekelmans, W.A.M., Baaijens, F.T.P., Predicting the shape of blanked products : a finite element approach, J. Mater. Process. Technol. 103 (2000) 516 CrossRefGoogle Scholar
Goijaerts, A.M., Govaert, L.E., Baaijens, F.T.P., Evaluation of ductile fracture models for different metals in blanking, J. Mater. Process. Technol. 110 (2001) 312323 CrossRefGoogle Scholar
Rachik, M., Roelandt, J.M., Maillard, A., Some phenomenological and computational aspects of sheet metal blanking simulation, J. Mater. Process. Technol. 128 (2002) 256265 CrossRefGoogle Scholar
Mediavilla, J., Peerlings, R.H.J., Geers, M.G.D., An integrated continuous-discontinuous approach towards damage engineering in sheet metal forming processes, Eng. Fract. Mech. 73 (2006) 895916 CrossRefGoogle Scholar
Tekiner, Z., Nalbant, M., Gürün, H., An experimental study for the effect of different clearances on burr, smooth-sheared and blanking force on aluminium sheet metal, Mater. Des. 27 (2006) 11341138 CrossRefGoogle Scholar
Marouani, H., Ben Ismail, A., Hug, E., Rachik, M., Rate-dependent constitutive model for sheet metal blanking investigation, Mater. Sci. Eng. A. 487 (2008) 162170 CrossRefGoogle Scholar
Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth : Part I – Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977) 115 CrossRefGoogle Scholar
Tvergaard, V., Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract. Mech. 17 (1981) 389407 CrossRefGoogle Scholar
Chu, C.C., Needleman, A., Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol. 102 (1980) 249256 CrossRefGoogle Scholar
Springmann, M., Kuna, M., Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques, Comp. Mater. Sci. 33 (2005) 501509 CrossRefGoogle Scholar
Vaz, J.M., Bressan, J.D., A computational approach to blanking processes. J. Mater. Process. Technol. 125-126 (2002) 206212 CrossRefGoogle Scholar