Article contents
EXPLICIT ZERO-FREE REGIONS FOR DIRICHLET
$L$-FUNCTIONS
Published online by Cambridge University Press: 03 April 2018
Abstract
Let $L(s,\unicode[STIX]{x1D712})$ be the Dirichlet
$L$-function associated to a non-principal primitive character
$\unicode[STIX]{x1D712}$ modulo
$q$ with
$3\leqslant q\leqslant 400\,000$. We prove a new explicit zero-free region for
$L(s,\unicode[STIX]{x1D712})$:
$L(s,\unicode[STIX]{x1D712})$ does not vanish in the region
$\mathfrak{Re}\,s\geqslant 1-1/(R\log (q\max (1,|\mathfrak{Im}\,s|)))$ with
$R=5.60$. This improves a result of McCurley where
$9.65$ was shown to be an admissible value for
$R$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2018
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180508072843461-0714:S0025579318000037:S0025579318000037_inline740.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180508072843461-0714:S0025579318000037:S0025579318000037_inline741.gif?pub-status=live)
- 4
- Cited by