Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:13:51.687Z Has data issue: false hasContentIssue false

Inner contact measures

Published online by Cambridge University Press:  26 February 2010

WM. J. Firey
Affiliation:
Oregon State University, Corvallis, Oregon, U.S.A.
Get access

Extract

We say a motion g brings a mobile convex body K into inner contact with a fixed body K0 if the image gK lies in K0 and shares a boundary point with K0; we speak of the inner contact being at the common boundary point. The mobile body K is said to roll freely in K0 if, corresponding to each boundary point x of K0 and each rotation R, there is a translation t such that RK + t = gK has inner contact with K0 at x.

Type
Research Article
Copyright
Copyright © University College London 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Blaschke, W.. Kreis und Kugel (Leipzig, 1916).CrossRefGoogle Scholar
2.Bonnesen, T. and Fenchel, W.. Theorie der konvexen Körper (Berlin, 1934).Google Scholar
3.Deltheil, R.. Probabilités géométriques (Paris, 1926).Google Scholar
4.Fenchel, W. and Jessen, B.. “Mengenfunktionen und konvexe Körper”, Danske Vid. Selskab Mat. -fys. Medd., 16(1938), 131.Google Scholar
5.Firey, W.. “Kinematic measures for sets of support figures”, Mathematika, 21 (1974), 270281.CrossRefGoogle Scholar
6.Koutroufiotis, D.. “On Blaschke's rolling theorems”, Arch. Math., 23 (1972). 655660.CrossRefGoogle Scholar
7.Santaló, L.. Integral geometry and geometric probability (Reading, Mass.-London-Amsterdam, 1976).Google Scholar
8.Schneider, R.. “Kinematische Berührmasse für konvexe Körper und Integralrelationen für Oberflächenmasse”, Math. Ann., 218 (1975), 253267.CrossRefGoogle Scholar
9.Schneider, R.. “Kinematic measures for sets of colliding convex bodies”, Mathematika, 25 (1978). 112.CrossRefGoogle Scholar
10.Weil, W.. “Berührwahrscheinlichkeiten für konvexe Körper”, (to appear).Google Scholar