Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T05:11:30.255Z Has data issue: false hasContentIssue false

Extremal self-dual lattices exist only in dimensions 1 to 8, 12, 14, 15, 23, and 24

Published online by Cambridge University Press:  26 February 2010

J. H. Conway
Affiliation:
University of Cambridge, Cambridge, England.
A. M. Odlyzko
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 07974, U.S.A
N. J. A. Sloane
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 07974, U.S.A
Get access

Abstract

It is known that if Λ is a self-dual lattice in ℝn, then

.

If equality holds the lattice is called extremal. In this paper we find all the extremal lattices: there are unique lattices in dimensions 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 23, 24 and no others.

Type
Research Article
Copyright
Copyright © University College London 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bourbaki, N.. Groupes et Algebres de Lie, Chapitres IV, V, VI (Hermann, Paris, 1968).Google Scholar
2.Conway, J. H.. “A group of order 8, 315, 553, 613, 086, 720, 000”, Bull. London Math. Soc, 1 (1969), 7988.CrossRefGoogle Scholar
3.Conway, J. H.. “A characterization of Leech's lattice”, Invent, math., 7 (1969), 137142.CrossRefGoogle Scholar
4.Conway, J. H.. “Three lectures on exceptional groups”, pp. 215-247 of Finite simple groups, edited by Powell, M. B. and Higman, G. (Academic Press, N.Y., 1971).Google Scholar
5.Kneser, M.. “Klassenzahlen definiter quadratischer Formen”, Archiv der Math., 8 (1957), 241250.CrossRefGoogle Scholar
6.Kneser, M.. “Lineare Relationen zwischen Darstellungsanzahlen quadratischer FormenMath. Ann., 168 (1967), 3139.CrossRefGoogle Scholar
7.Leech, J.. “Notes on sphere packings”, Canad. Math. J., 19 (1967), 251267.CrossRefGoogle Scholar
8.Leech, J. and Sloane, N. J. A.. “Sphere packings and error-correcting codes”, Canad. J. Math., 23 (1971), 718745.CrossRefGoogle Scholar
9.MacWilliams, F. J. and Sloane, N. J. A.. “Pseudo-random sequences and arrays”, Proc. IEEE, 64 (1976), 17151729.CrossRefGoogle Scholar
10.Mallows, C. L., Odlyzko, A. M. and Sloane, N. J. A.. “Upper bounds for modular forms, lattices, and codes”, J. Algebra, 36 (1975), 6876.CrossRefGoogle Scholar
11., M. I. T., Mathlab Group. MACSYMA Reference Manual, Project MAC, Version 8 (M.I.T., Cambridge, Mass., 1975).Google Scholar
12.Niemeier, H. V.. “Definite quadratische Formen der Dimension 24 und Diskriminante 1”, J. Number Theory, 5 (1973), 142178.CrossRefGoogle Scholar
13.Siegel, C. L.. “Berechnung von Zetafunktionen an ganzzahligen Stellen”, Gottingen Nach., No. 10 (1969), 87102.Google Scholar
14.Sloane, N. J. A.. “Binary codes, lattices, and sphere-packings”, pp. 117164 of Combinatorial Surveys: Proc. 6th British Comb. Conf. (Academic Press, London and New York, 1977).Google Scholar
15.Ward, H. N.. “A restriction on the weight enumerator of a self-dual code”, J. Combinatorial Theory, 21A (1976), 253255.CrossRefGoogle Scholar
16.Whittaker, E. T. and Watson, G. N.. A course of modern analysis, 4th ed. (Cambridge Univ. Press, Cambridge, 1963).Google Scholar