Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:55:33.941Z Has data issue: false hasContentIssue false

Espaces К-analytiques et espaces de Baire de fonctions continues

Published online by Cambridge University Press:  26 February 2010

Gabriel Debs
Affiliation:
Équipe D'Analyse, Université Paris VI, 4, Place Jussieu, 75230 Paris Cedex 05, France.
Get access

Extract

Le point de départ de ce travail est le résultat suivant.

THÉORÈME (I. Namioka). Soient X et Y deux espaces compacts et

Si f est continue quand on munit(Y) de la topologie de convergence simple alors X contient un Gδ dense en tout point duquel f reste continue quand on munit(Y) de la topologie de la convergence uniform.

Type
Research Article
Copyright
Copyright © University College London 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Calbrix, J. et Troallic, J. P.. Applications separement continues. C.R. Acad. Sci. Paris, 288 (1979), 647648.Google Scholar
2.Choquet, G.. Lectures on Analysis, Vol. 1 (W. A. Benjamin Inc., New-York, Amsterdam, 1969).Google Scholar
3.Christensen, J. P. R.. Joint continuity of separately continuous functions. Proc. Amer. Math. Soc., 82 (1981), 455461.CrossRefGoogle Scholar
4.Christensen, J. P. R.. Remarks on Namioka spaces and R. E. Johnson's theorem on the norm separability of the range of certain mappings. Math. Scand., 52 (1983), 112116.CrossRefGoogle Scholar
5.Christensen, J. P. R.Theorems of Namioka and Johnson type for u.s.c.o. set-valued mappings. Proc. Amer. Math. Soc, 86 (1982), 649655.CrossRefGoogle Scholar
6.Deville, R.. Parties faiblement de Baire dans les espaces de Banach. ThèseUniversité Paris VI.Google Scholar
7.Namioka, I.. Separate and joint continuity. Pacific J. of Math., 51 (1974), 515531.CrossRefGoogle Scholar
8.Saint-Raymond, J.. Jeux topologiques et espaces de Namioka. Proc. Amer. Math. Soc, 87 (1983), 499504.CrossRefGoogle Scholar
9.Stegall, C.. Gateaux differentiation of functions on a certain class of Banach spaces. Functional Analysis: Surveys and Recent Results III (Elsevier Science Publishers, North-Holland, 1984).Google Scholar
10.Talagrand, M.. Deux généralisations d'un théorème de I. Namioka. Pacific J. Math., 81 (1979), 239251.CrossRefGoogle Scholar
11.Talagrand, M.. Espace de Baire et espaces de Namioka. Math. Annalen, 270 (1985), 159164.CrossRefGoogle Scholar