Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:42:42.984Z Has data issue: false hasContentIssue false

Convex bodies which tile space by translation

Published online by Cambridge University Press:  26 February 2010

P. McMullen
Affiliation:
University College London, Gower Street, London WC1E 6BT.
Get access

Abstract

It is shown that a convex body K tiles Ed by translation if, and only if, K is a centrally symmetric d-polytope with centrally symmetric facets, such that every belt of K (consisting of those of its facets which contain a translate of a given (d – 2)-face) has four or six facets. One consequence of the proof of this result is that, if K tiles Ed by translation, then K admits a face-to-face, and hence a lattice tiling.

Type
Research Article
Copyright
Copyright © University College London 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, A. D.. “A theorem on convex polyhedra”, Trudy Mat. Inst. Steklov 4 (1933), 87 (Russian).Google Scholar
Aleksandrov, A. D.. Konvexe Polyeder (Akademie-Verlag, Berlin, 1958) (translated from Russian edition, 1950).Google Scholar
Coxeter, H. S. M.. “The classification of zonohedra by means of projective diagrams”, J. Maths. Pures Appl. 41 (1962), 137156.Google Scholar
Coxeter, H. S. M.. Regular polytopes (Dover, 1973).Google Scholar
Delaunay, B. N.(Delone). “Sur la théorie des paralléloèdres”, C. R. Acad. Sci. Paris 183 (1926), 464467.Google Scholar
Delaunay, B. N.. “Sur la partition regulière de l'espace à 4 dimensions, I, II”, Izvestia Akad. Nauk. SSSR, Ser. VII (1929), 79110, 147-164.Google Scholar
Delaunay, B. N.. “Sur la généralization de la théorie des paralléloèdres”, Izvestia Akad. Nauk SSSR, Ser. VII (1933), 641646.Google Scholar
Fedorov, E. S.. Elements of the study of figures (Russian, St. Petersburg, 1885; reprinted, Leningrad, 1953).Google Scholar
Groemer, H.. “Ueber Zerlegungen des Euklidischen Raumes”, Math. Z. 79 (1962), 364375.CrossRefGoogle Scholar
Groemer, H.. “Ueber die Zerlegung des Raumes in homothetische konvexe Körper”, Monatsh. Math. 68 (1964), 2132.CrossRefGoogle Scholar
Groemer, H.. “Continuity properties of Voronoĭ domains”, Monatsh. Math. 75 (1971), 423431.CrossRefGoogle Scholar
Gruber, P.. “Geometry of numbers.” In Contributions to geometry ed. Tölke, J. and Wills, J. M. (Birkhäuser Verlag, 1979), 186225.CrossRefGoogle Scholar
Hilbert, D.. “Problèmes futurs des mathématiques”, Proc. II Internat. Congr. Math. 1900 (Paris, 1902), 58114.Google Scholar
Kershner, R. B.. “On paving the plane”, Amer. Math. Monthly 75 (1968), 839844.CrossRefGoogle Scholar
McMullen, P.. “Polytopes with centrally symmetric faces”, Israel J. Math. 8 (1970), 194196.CrossRefGoogle Scholar
McMullen, P.. “Space tiling zonotopes”, Mathematika 22 (1975), 202211.CrossRefGoogle Scholar
McMullen, P.. “Polytopes with centrally symmetric facets”, Israel J. Math. 23 (1976), 337338.CrossRefGoogle Scholar
Minkowski, H.. “Allgemeine Lehrsätze über konvexen Polyeder”, Nachr. K. Akad. Wiss. Göttingen, Math.-Phys. Kl. ii (1897), 198219.Google Scholar
Shephard, G. C.. “Polytopes with centrally symmetric faces”, Canad. J. Math. 19 (1967), 12061213.CrossRefGoogle Scholar
Shephard, G. C.. “Space-filling zonotopes”, Mathematika 21 (1974), 261269.CrossRefGoogle Scholar
Stein, S. K.. “A symmetric star body that tiles but not as a lattice”, Proc. Amer. Math. Soc 36 (1972), 543548.CrossRefGoogle Scholar
Voronoĭ, G. F.. “Nouvelles applications des paramètres continus a la théorie des formes quadratiques, Deuxième Mémoire I, II”, J. Reine Angew. Math. 134 (1908), 198287; 136 (1909), 67-181.CrossRefGoogle Scholar
Žitomirskiĭ, O. K.. “Verschärfung eines Satzes von Woronoi”, Z. Leningr. fiz.-mat. Obšč., 2 (1929), 131151.Google Scholar