Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:36:36.687Z Has data issue: false hasContentIssue false

ALGEBRAIC ASPECTS OF SPECTRAL THEORY

Published online by Cambridge University Press:  21 December 2010

E. B. Davies*
Affiliation:
Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, U.K. (email: [email protected])
Get access

Abstract

We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×n matrices with entries that are polynomials or more general analytic functions.

Type
Research Article
Copyright
Copyright © University College London 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley (Reading, MA, 1969).Google Scholar
[2]Ball, J. A. and Rakowski, M., Minimal McMillan degree rational matrix functions with prescribed local zero-pole structure. Linear Algebra Appl. 137138 (1990), 325349.Google Scholar
[3]Bhatia, R. and Rosenthal, P., How and why to solve the operator equation AXXB=Y. Bull. Lond. Math. Soc. 29 (1997), 121.CrossRefGoogle Scholar
[4]Bourbaki, N., Éléments de mathématiques, fasc. 32, Théories spectrales, Hermann (Paris, 1967), Ch. 1, 2.Google Scholar
[5]Carter, R. W., Simple Groups of Lie Type, John Wiley and Sons (London, 1989).Google Scholar
[6]Coppel, W. A., Matrices of rational functions. Bull. Aust. Math. Soc. 11 (1974), 89113.CrossRefGoogle Scholar
[7]Dales, G., Banach Algebras and Automatic Continuity (London Mathematical Society Monographs 2), Clarendon Press (Oxford, 2000).Google Scholar
[8]Davies, E. B., Linear Operators and their Spectra, Cambridge University Press (Cambridge, 2007).CrossRefGoogle Scholar
[9]Davies, E. B., Decomposing the essential spectrum. J. Funct. Anal. 257 (2009), 506536.Google Scholar
[10]Dedier, J.-P. and Tisseur, F., Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Appl. 358 (2003), 7194.Google Scholar
[11]Duffin, R. J. and Hazony, D., The degree of a rational matrix function. SIAM J. Appl. Math. 11 (1963), 645658.CrossRefGoogle Scholar
[12]Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators, Oxford University Press (Oxford, 1987).Google Scholar
[13]Flanders, H. and Wimmer, H. K., On the matrix equations AXXB=G and AXY B=C. SIAM J. Appl. Math. 32 (1977), 707710.CrossRefGoogle Scholar
[14]Georgescu, V. and Iftimovici, A., C *-algebras of quantum Hamiltonians. In Operator Algebras and Mathematical Physics (Proc. Conf. Operator Algebras and Mathematical Physics, Constanta 2001, Ed. Theta) (eds J.-M. Combes, J. Cuntz, G. A. Elliot, G. Nenciu, H. Siedentop and S. Stratila) (2003) 123–167.Google Scholar
[15]Georgescu, V. and Iftimovici, A., Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory. Rev. Math. Phys. 18 (2006), 417483.Google Scholar
[16]Gohberg, I., Lancaster, P. and Rodman, L., Matrix Polynomials, Academic Press (New York, 1982).Google Scholar
[17]Lancaster, P. and Rodman, L., Algebraic Riccati Equations, Oxford University Press (Oxford, 1995).Google Scholar
[18]Marcus, A. S. and Merentsa, I. V., On some properties of λ-matrices. Math. Issled, Kishinev 3 (1975), 207213 (in Russian).Google Scholar
[19]Nevanlinna, R. and Paatero, V., Introduction to Complex Analysis, Addison-Wesley (Reading, MA, 1964).Google Scholar
[20]Peller, V. V., Hankel Operators and their Applications, Springer (New York, 2003).Google Scholar
[21]Pressley, A. and Segal, G., Loop Groups (Oxford Mathematical Monographs), Oxford University Press (Oxford, 1986).Google Scholar
[22]Rosenblum, M., On the operator equation BXXA=Q. Duke Math. J. 23 (1956), 263269.CrossRefGoogle Scholar
[23]Rosenbrock, H. H., State-Space and Multivariable Theory, Thomas Nelson and Sons (London, 1970).Google Scholar
[24]Roth, W. E., The equation AXY B=C and AXXB=C in matrices. Proc. Amer. Math. Soc. 3 (1952), 392396.Google Scholar
[25]Saks, S. and Zygmund, A., Analytic Functions. Transl. E. J. Scott, Monografie Matematyczne, Tom 28, (Warsaw, 1952).Google Scholar
[26]Sz.-Nagy, B. and Foiaş, C., Harmonic Analysis of Operators on Hilbert Space, North-Holland (Amsterdam, 1970).Google Scholar
[28]Voiculescu, D. V., Dykema, K. J. and Nica, A., Free random variables. In A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups (CRM Monograph Series 1), American Mathematical Society (Providence, RI, 1992).Google Scholar
[29]Whitney, H., Complex Analytic Varieties, Addison-Wesley (Reading, MA, 1972).Google Scholar
[30]Zhou, K., Doyle, J. C. and Glover, K., Robust and Optimal Control, Prentice Hall (Upper Saddle River, NJ, 1996).Google Scholar