For cardinal numbers λ, K, ∑ a (λ, K)-family is a family of sets such that || = and |A| = K for every A ε , and a (λ, K, ∑)-family is a (λ,K)-family such that |∪| = ∑. Two sets A, B are said to be almost disjoint if
and an almost disjoint family of sets is a family whose members are pairwise almost disjoint. A representing set of a family is a set X ⊆ ∪ such that X ∩ A = ⊘ for each A ε . If is a family of sets and |∪| = ∑, then we write εADR() to signify that is an almost disjoint family of ∑-sized representing sets of . Also, we define a cardinal number