Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:08:11.490Z Has data issue: false hasContentIssue false

Symmetric pairs and associated commuting varieties

Published online by Cambridge University Press:  01 September 2007

DMITRI PANYUSHEV
Affiliation:
Independent University of Moscow, Bol'shoi Vlasevskii per. 11, 119002 Moscow, Russia. email: [email protected]
OKSANA YAKIMOVA
Affiliation:
MPI für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany. email: [email protected]

Abstract

Let be a -grading of a simple Lie algebra . The commuting variety associated with such a grading is the variety of pairs of commuting elements from . We study the problem of irreducibility of these varieties. Using invariant-theoretic technique, we present new instances of reducible and irreducible commuting varieties.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Collingwood, D. and McGovern, W.. Nilpotent Orbits in Semisimple Lie Algebras. Mathematics Series (Van Nostrand Reinhold, 1993).Google Scholar
[2]Djoković, D. Ž.. Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers. J. Algebra 112 (1988), no. 2, 503524.CrossRefGoogle Scholar
[3]Dynkin, E. B.. Semisimple subalgebras of semisimple Lie algebras. Mat. Sb. 30 (1952), no. 2, 349–462 (Russian). English translation: Amer. Math. Soc. Transl. II Ser., 6 (1957), 111244.Google Scholar
[4]Ginzburg, V.. Principal nilpotent pairs in a semisimple Lie algebra, I (with an appendix by A.G. Elashvili and D. Panyushev). Invent. Math. 140 (2000), 511561.CrossRefGoogle Scholar
[5]Jantzen, J. C.. Nilpotent orbits in representation theory. Progr. Math. 228 (2004), 1211.Google Scholar
[6]Kostant, B. and Rallis, S.. Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753809.CrossRefGoogle Scholar
[7]Levasseur, T. and Stafford, J.T.. Invariant differential operators on the tangent space of some symmetric spaces. Ann. Inst. Fourier 49, no. 6 (1999), 17111741.CrossRefGoogle Scholar
[8]Ohta, T.. Classification of admissible nilpotent orbits in the classical real Lie algebras. J. Algebra 136 (1991), 290333.CrossRefGoogle Scholar
[9]Onishchik, A. L. and Vinberg, E.B.. Lie Groups and Algebraic Groups (Springer-Verlag, 1990).CrossRefGoogle Scholar
[10]Panyushev, D.. The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties. Compositio Math. 94 (1994), 181199.Google Scholar
[11]Panyushev, D.. Nilpotent pairs in semisimple Lie algebras and their characteristics. Intern. Math. Res. Notices no. 1 (2000), 121.CrossRefGoogle Scholar
[12]Panyushev, D.. On the irreducibility of commuting varieties associated with involutions of simple Lie algebras. Funct. Anal. Appl. 38 (2004), 3844.CrossRefGoogle Scholar
[13]Richardson, R.. Commuting varieties of semisimple Lie algebras and algebraic groups. Compositio Math. 38 (1979), 311327.Google Scholar
[14]Sabourin, H. and Yu, R. W. T.. Sur l'irréductibilité de la variété commutante d'une paire symétrique réductive de rang 1. Bull. Sci. Math. 126 (2002), 143150.CrossRefGoogle Scholar
[15]Sabourin, H. and Yu, R. W. T.. On the irreducibility of the commuting variety of the symmetric pair sop+2, sop×so2). J. Lie Theory 16 (2006), no. 1, 5765.Google Scholar