Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T17:10:33.005Z Has data issue: false hasContentIssue false

Superconductivity of tin isotopes

Published online by Cambridge University Press:  24 October 2008

J. M. Lock
Affiliation:
Royal Society Mond LaboratoryCambridge
A. B. Pippard
Affiliation:
Royal Society Mond LaboratoryCambridge
D. Shoenberg
Affiliation:
Royal Society Mond LaboratoryCambridge

Abstract

Detailed measurements have been made of the superconducting transition temperatures and critical magnetic fields of the tin isotopes of mass 116, 120 and 124. The transition temperature varies with isotopic mass according to the law TcMn, with n = 0·462 ± 0·014, a result very similar to that already found in mercury. The critical field curves of isotopes 116 and 124 are geometrically similar, in the sense that both many be represented by the same equation, Hc/Ho = f(T/Tc), with the same ratio Ho/Tc for both. It is deduced that the electronic specific heat in normal tin varies only slowly, if at all, with isotopic mass. The variation of Tc and Ho with M is very close to that predicted by Fröhlich and Bardeen.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Fröhlich, H.Phys. Rev. 79 (1950), 845; Proc. Phys. Soc. A, 63 (1950), 778.CrossRefGoogle Scholar
(2)Bardeen, J.Phys. Rev. 80 (1950), 567.CrossRefGoogle Scholar
(3)Maxwell, E.Phys. Rev. 78 (1950), 477.CrossRefGoogle Scholar
(4)Reynolds, C. A., Serin, B., Wright, W. H. and Nesbitt, L. B.Phys. Rev. 78 (1950), 487. Serin, B., Reynolds, C. A. and Nesbitt, L. B. Phys. Rev. 80 (1950), 761.CrossRefGoogle Scholar
(5)A.E.R.E. Report, G/R, 689 (1951).Google Scholar
(6)Shoenberg, D.Phys. Soc. Cambridge Conference Report, 2 (1947), 85.Google Scholar
(7)van Dijk, H. and Shoenberg, D.Nature, London, 164 (1949), 151.CrossRefGoogle Scholar
(8)Désirant, M. and Shoenberg, D.Proc. Roy. Soc. A, 194 (1948), 63.Google Scholar
(9)Maxwell, E.Phys. Rev. 79 (1950), 173.CrossRefGoogle Scholar
(10)Laurmann, E. and Shoenberg, D.Proc. Roy. Soc. A, 198 (1949), 560.Google Scholar
(11)de Haas, W. J. and Engelkes, A. D.Physica, 4 (1937), 325.CrossRefGoogle Scholar
(12)Allen, W. D., Dawton, R. H., Lock, J. M., Pippard, A. B. and Shoenberg, D.Nature, London, 166 (1950), 1071.CrossRefGoogle Scholar
(13)Allen, E. D., Dawton, R. H., Bär, M., Mendelssohn, K. and Olsen, J. L.Nature, London, 166 (1950), 1071.CrossRefGoogle Scholar
(14)Daunt, J. G. and Mendelssohn, K.Proc. Roy. Soc. A, 160 (1937), 127.Google Scholar
(15)Keesom, W. H. and van Laer, P. H.Physica, 5 (1938), 193.CrossRefGoogle Scholar