Published online by Cambridge University Press: 24 October 2008
It is well known that a spherically symmetric space-time is, in general, of class two. A necessary and sufficient condition for a spherically symmetric space-time to be of class one has been obtained in terms of the Riemann curvature tensor. By means of a transformation property of s.s. space-time, three distinct cases are shown to exist. The incompatibility of class one spherically symmetric space-times with Rainich algebraic conditions is established in these three cases. It is concluded that spherically symmetric electromagnetic fields cannot be embedded in a flat space of 5-dimensions.