Let a1, a2,… be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity; let b1, b2,… be a set of positive constants. In this work, we obtain the average number of zeros in the interval (0, 2π) of trigonometric polynomials of the form
for large n. The case when bk = kσ (σ > − 3/2;) is studied in detail. Here the required average is (2σ + 1/2σ + 3)½.2n + o(n) for σ ≥ − ½ and of order n3/2; + σ in the remaining cases.