Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T04:22:08.492Z Has data issue: false hasContentIssue false

The space group corepresentations of antiferromagnetic NiO

Published online by Cambridge University Press:  24 October 2008

A. P. Cracknell
Affiliation:
Department of Physics, University of Essex, Wivenhoe Park, Colchester, Essex
S. J. Joshua
Affiliation:
Department of Physics, University of Essex, Wivenhoe Park, Colchester, Essex

Abstract

The geometry of the Brillouin zone of antiferromagnetic NiO (Cc2/c) is studied. The corepresentations of the magnetic little group are deduced for the points and lines of symmetry. The magnon symmetries are investigated and the selection ruies for two magnon electric dipole and magnetic dipole absorption are deduced.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Altmann, S. L. and Cracknell, A. P.Lattice harmonics I. Cubic groups. Rev. Modern Phys. 37 (1965), 1932.CrossRefGoogle Scholar
(2)Begum, N. A. and Reissland, J. A.Magnon energies in nickel oxide. Phys. Lett. 27A (1968), 148149.CrossRefGoogle Scholar
Reissland, J. A. and Begum, N. A., Magnons in antiferromagnetic NiO, MnO and αMnS. J. Phys. C (Solid St. Phys.) 2 (1969), 874881.CrossRefGoogle Scholar
(3)Bouckaert, L. P., Smoluchowski, R. and Wigner, E.Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50 (1936), 5867.CrossRefGoogle Scholar
(4)Bradley, C. J.Space groups and selection rules. J. Mathematical Phys. 7 (1966), 11451152.CrossRefGoogle Scholar
(5)Cracknell, A. P.Corepresentations of magnetic point groups. Progr. Theoret. Phys. 35 (1966), 196213.CrossRefGoogle Scholar
(6)Cracknell, A. P. and Wong, K. C.Double-valued corepresentations of magnetic point groups. Austral. J. Phys. 20 (1967), 173188.CrossRefGoogle Scholar
(7)Dimmock, J. O. and Wheeler, R. G.Symmetry properties of wave functions in magnetic crystals. Phy. Rev. 127 (1962), 391404.CrossRefGoogle Scholar
(8)Dimmock, J. O. and Wheeler, R. G.Irreducible representations of magnetic groups. J. Phys. Chem. Solids 23 (1962), 729741.CrossRefGoogle Scholar
(9)Koster, G. F.Space groups and their representations. Solid State Physics 5 (1957), 173256.CrossRefGoogle Scholar
(10)Loudon, R.Theory of infra-red and optical spectra of antiferromagnets. Advances in Phys. 17 (1968), 243280.CrossRefGoogle Scholar
(11)Nagamiya, T., Yosida, K. and Kubo, R.Antiferromagnetism. Advances in Phys. 4 (1955), 1112.CrossRefGoogle Scholar
(12)Rooksby, H. P.A note on the structure of nickel oxide at subnormal and elevated temperatures. Acta cryst. 1 (1948), 226.CrossRefGoogle Scholar
(13)Roth, W. L.Magnetic structures of MnO, FeO, CoO and NiO. Phys. Rev. 110 (1958), 13331341.CrossRefGoogle Scholar
Roth, W. L.Multispin axis structures for antiferromagnets. Phys. Rev. 111 (1958), 772781.CrossRefGoogle Scholar
(14)Shubnikov, A. V. and Belov, N. V.Colored symmetry. (Pergamon Press; Oxford, 1964).Google Scholar
(15)Shull, C. G., Strauser, W. A. and Wollan, E. O.Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys. Rev. 83 (1951), 333345.CrossRefGoogle Scholar
(16)Slack, G. A.Crystallography and domain walls in antiferromagnetic NiO crystals. J. Appl. Phys. 31 (1960), 15711582.CrossRefGoogle Scholar
(17)Slater, J. C.Quantum theory of molecules and solids, volume 2 (McGraw-Hill; New York, 1965).Google Scholar
(18)Uchida, E., Fukuoka, N., Kondoh, H., Takeda, T., Nakazumi, Y. and Nagamiya, T.Magnetic anisotropy of single crystals of NiO and MnO. J. Phys. Soc. Japan 23 (1967), 11971203.CrossRefGoogle Scholar
(19)Yamada, T.Magnetic anisotropy, magnetostriction, and magnetic domain walls in NiO. I. Theory. J. Phys. Soc. Japan 21 (1966), 664671.CrossRefGoogle Scholar
(20)Yamada, T., Saito, S. and Shimomura, Y.Magnetic anisotropy, magnetostriction, and magnetic domain walls in NiO. II. Experiment. J. Phys. Soc. Japan 21 (1966), 672680.CrossRefGoogle Scholar