Published online by Cambridge University Press: 01 January 2009
A notion of good behavior is introduced for a definable subcategory of left R-modules. It is proved that every finitely presented left R-module has a pure projective left -approximation if and only if the associated torsion class of finite type in the functor category (mod-R, Ab) is coherent, i.e., the torsion subobject of every finitely presented object is finitely presented. This yields a bijective correspondence between such well-behaved definable subcategories and preenveloping subcategories of the category Add(R-mod) of pure projective left R-modules. An example is given of a preenveloping subcategory ⊆ Add(R-mod) that does not arise from a covariantly finite subcategory of finitely presented left R-modules. As a general example of this good behavior, it is shown that if R is a ring over which every left cotorsion R-module is pure injective, then the smallest definable subcategory (R-proj) containing every finitely generated projective module is well-behaved.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.