Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T13:48:35.839Z Has data issue: false hasContentIssue false

Properly algebraic and spectrum-finite ideals in Jordan systems

Published online by Cambridge University Press:  24 October 2008

Ottmar Loos
Affiliation:
Institut für Mathematik, Universität Innsbruck, Technikerstr.25/7, A-6020 Innsbruck, Austria

Extract

The two main results of this paper are:

(i) The set of properly algebraic elements of a Jordan system (algebra, triple system or pair) over an uncountable field is an ideal.

(ii) For a semiprimitive Banach Jordan system, the socle, the largest properly algebraic ideal, the largest properly spectrum-finite ideal and the largest von Neumann regular ideal all coincide.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Amitsue, A. S.. Algebras over infinite fields. Proc. Am. Math. Soc. 7 (1956), 3548.CrossRefGoogle Scholar
[2]Benslimane, M., Jaa, O. and Kaidi, A.. The socle and the largest spectrum finite ideal. Quart. J. Math. Oxford 42 (1991), 17.CrossRefGoogle Scholar
[3]Fernández, A.. Noncommutative Jordan Riesz algebras. Quart. J. Math. Oxford 39 (1988), 6780.Google Scholar
[4]Fernández, A., García, E. and Sánchez, E., von Neumann regular Jordan Banach triple systems. J. London Math. Soc. 42 (1990), 3248.Google Scholar
[5]Fernández, A. and Rodríguez, A.. On the socle of a noncommutative Jordan algebra. Manuscr. math. 56 (1986), 269278.CrossRefGoogle Scholar
[6]Hessenberger, G.. Banach–Jordan–Paare (Diplomarbeit, Universität Innsbruck, 1992).Google Scholar
[7]Jacobson, N. and Katz, J.. Generically algebraic quadratic Jordan algebras. Scripta math. 29 (1973), 215227.Google Scholar
[8]Loos, O.. Jordan Pairs. Lecture Notes in Math., vol. 460 (Springer-Verlag, 1975).CrossRefGoogle Scholar
[9]Loos, O.. On the socle of a Jordan pair. Collect. Math. 40 (1989), 109125.Google Scholar
[10]Loos, O.. Finiteness conditions in Jordan pairs. Math. Z. 206 (1991), 577587.CrossRefGoogle Scholar
[11]Loos, O.. Recent results on finiteness conditions in Jordan pairs. In Proceedings of the 1992 Oberwolfach Conference on Jordan Algebras (to appear).Google Scholar
[12]Loos, O. and Neher, E.. Complementation of inner ideals in Jordan pairs. J. Algebra (to appear).Google Scholar
[13]Martínez, J.. Holomorphic functional calculus in Jordan-Banach algebras. Ann. Sci. Univ. ‘Blaise Pascal’, Clermont II, Sér. Math., Fasc. 27 (1991), 125134.Google Scholar
[14]McCrimmon, K.. Homotopes of alternative algebras. Math. Ann. 191 (1971), 253262.CrossRefGoogle Scholar
[15]McCrimmon, K.. Amitsur shrinkage of Jordan radicals. Comm. in Algebra 12 (1984), 777826.CrossRefGoogle Scholar
[16]Petersson, H. P.. Zur Arithmetik der Jordan–Paare. Math. Z. 147 (1976), 139161.CrossRefGoogle Scholar
[17]Rodríguez, A.. Jordan structures in analysis. In Proceedings of the 1992 Oberwolfach Conference on Jordan Algebras (to appear).Google Scholar
[18]Smyth, M. R. F.. Riesz theory in Banach algebras. Math. Z. 145 (1975), 145155.CrossRefGoogle Scholar