Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T09:11:04.957Z Has data issue: false hasContentIssue false

A proof of Sperner's lemma via Hall's theorem

Published online by Cambridge University Press:  24 October 2008

T. C. Brown
Affiliation:
Simon Fraser University

Extract

Let S be a Sperner set of subsets of {1, 2, …, n}. (That is, for A, BS, if AB then AB and BA.) Then

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Hall, P.On representation of subsets. J. London Math. Soc. 10 (1935), 2630.CrossRefGoogle Scholar
(2)Lubell, D.A short proof of Sperner's lemma J. Combinatorial Theory 1 (1966), 299.CrossRefGoogle Scholar
(3)Sperner, E.Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928), 544548.CrossRefGoogle Scholar