Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T13:49:58.106Z Has data issue: false hasContentIssue false

Open projections and suprema in the Cuntz semigroup

Published online by Cambridge University Press:  27 September 2016

JOAN BOSA
Affiliation:
School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, G12 8QW, Glasgow e-mails: [email protected], [email protected], [email protected]
GABRIELE TORNETTA
Affiliation:
School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, G12 8QW, Glasgow e-mails: [email protected], [email protected], [email protected]
JOACHIM ZACHARIAS
Affiliation:
School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, G12 8QW, Glasgow e-mails: [email protected], [email protected], [email protected]

Abstract

We provide a new and concise proof of the existence of suprema in the Cuntz semigroup using the open projection picture of the Cuntz semigroup initiated in [12]. Our argument is based on the observation that the supremum of a countable set of open projections in the bidual of a C*-algebra A is again open and corresponds to the generated hereditary C*-subalgebra of A.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Akemann, C. A. The general Stone-Weierstrass problem. J. Funct. Anal. 4 (2) (1969), 277294.CrossRefGoogle Scholar
[2] Antoine, R., Bosa, J. and Perera, F. Completions of monoids with applications to the Cuntz semigroup. Internat. J. Math. 22 (6) (2011), 837861.CrossRefGoogle Scholar
[3] Antoine, R., Perera, F. and Thiel, H. Tensor products and regularity properties of Cuntz semigroups. Preprint.Google Scholar
[4] Ara, P., Perera, F. and Toms, A. S. K-theory for operator algebras. Classification of C*-algebras. In Aspects of operator algebras and applications. Contemp. Math. vol. 534 (Amer. Math. Soc., Providence, RI, 2011), pp. 1–71.CrossRefGoogle Scholar
[5] Blackadar, B. K-theory for operator algebras. Math. Sci. Res. Inst. Publ. vol. 5 (Cambridge University Press, Cambridge, second edition, 1998).Google Scholar
[6] Brown, N. P. and Ciuperca, A. Isomorphism of Hilbert modules over stably finite C*-algebras. J. Funct. Anal. 257 (1) (2009), 332339.CrossRefGoogle Scholar
[7] Brown, N. P., Perera, F. and Toms, A. S. The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras. J. Reine Angew. Math 621 (2008), 191211.Google Scholar
[8] Coward, K. T., Elliott, G. A. and Ivanescu, C. The Cuntz semigroup as an invariant for C*-algebras. J. Reine Angew. Math. 623 (2008), 161193.Google Scholar
[9] Cuntz, J. Dimension functions on simple C*-algebras. Math. Ann. 233 (1978), 145153.CrossRefGoogle Scholar
[10] Cuntz, J. The internal structure of simple C*-algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. vol. 38 (Amer. Math. Soc., Providence, R.I., 1982), pp. 85115.CrossRefGoogle Scholar
[11] Kirchberg, E. and Rørdam, M.. Infinite Non-simple C*-Algebras: Absorbing the Cuntz Algebra $\Ncal O_\infty$ . Adv. Math. 167 (2) (2002), 195264.CrossRefGoogle Scholar
[12] Ortega, E., Rørdam, M. and Thiel, H.. The Cuntz semigroup and comparison of open projections. J. Funct. Anal. 260 (12) (2011), 34743493.CrossRefGoogle Scholar
[13] Peligrad, C. and Zsidó, L. Open projection of C*-algebras comparison and regularity. In Operator theoretical methods. Proceedings of the 17th international conference on operator theory (Timişoara, Romania, June 23–26, 1998), (Bucharest, 2000. The Theta Foundation), pp. 285–300.Google Scholar
[14] Robert, L. and Tikuisis, A. Hilbert C*-modules over a commutative C*-algebra. Proc. Lond. Math. Soc. (3) 102 (2) (2011), 229256.CrossRefGoogle Scholar
[15] Rørdam, M. On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal. 107 (2) (1992), 255269.CrossRefGoogle Scholar
[16] Santiago, L. Classification of non-simple C*-algebras: Inductive limits of splitting interval algebras. PhD thesis (Department of Mathematics, University of Toronto, Toronto, Canada, 2008).Google Scholar