Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:06:46.047Z Has data issue: false hasContentIssue false

On Killing vectors and invariance transformations of the Einstein–Maxwell equations

Published online by Cambridge University Press:  24 October 2008

M. L. Woolley
Affiliation:
Astronomy Centre, University of Sussex

Abstract

It is shown that, in a simply connected four dimensional Riemannian space, an arbitrary divergence-free vector generates a one-parameter group of point transformations which leaves Maxwell's equations unchanged. This result is used to show that, if the metric tensor of a simply connected vacuum Einstein–Maxwell space-time admits a group of motions which is also an invariance group of the electromagnetic field tensor, then there exists a one-parameter family of metric tensors all of which satisfy the Einstein–Maxwell equations with the invariant electromagnetic field as source.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Buchdahl, H. A.Quart. J. Math. Oxford Ser. 5 (1970), 116.CrossRefGoogle Scholar
(2)Ehlers, J.Les théories relativiatis de la gravitation (Paris, C.N.R.S., 1969).Google Scholar
(3)Ernst, F. J.Phys. Rev. 168 (1968), 14151417.CrossRefGoogle Scholar
(4)Geroch, R.J. Mathematical Phys. 12 (1971), 918924.CrossRefGoogle Scholar
(5)Geroch, R.J. Mathematical Phys. 13 (1972), 394404.CrossRefGoogle Scholar
(6)Harrison, B. K.Phys. Rev. 138 (1965), B488B494.CrossRefGoogle Scholar
(7)Harrison, B. K.J. Mathematical Phys. 9 (1968), 17441752.CrossRefGoogle Scholar
(8)Kennersley, W.J. Mathematical Phys. 14 (1973), 651.CrossRefGoogle Scholar
(9)Plybon, B. F.J. Mathematical Phys. 12 (1971), 5760.CrossRefGoogle Scholar
(10)Plybon, B. F.J. Mathematical Phys. 15 (1974), 683686.CrossRefGoogle Scholar
(11)Ray, J. R. and Thompson, E. L.J. Mathematical Phys. 16 (1975), 345383.CrossRefGoogle Scholar
(12)Schouten, J. A.Ricci Calculus. (Berlin, Springer-Verlag, 1954).CrossRefGoogle Scholar
(13)Woolley, M. L.Comm. Math. Phys. 33 (1973), 135144.CrossRefGoogle Scholar
(14)Woolley, M. L.Comm. Math. Phys. 31 (1973), 7581.CrossRefGoogle Scholar
(15)Woolley, M. L.Proc. Roy. Soc. Ser. A 336 (1974), 273284.Google Scholar