Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T00:50:22.405Z Has data issue: false hasContentIssue false

On fast Birkhoff averaging

Published online by Cambridge University Press:  24 October 2003

AI-HUA FAN
Affiliation:
Department of Mathematics, Wuhan University, Wuhan 430072, China LAMFA, CNRS UMR 6140, Unversité de Picardie 80039 Amiens, France. e-mail: [email protected]
JÖRG SCHMELING
Affiliation:
Department of Mathematics, University of Lund, LTH P.O. Box 118, SE-221 00 LUND, Sweden. e-mail: [email protected]

Abstract

We study the pointwise behavior of Birkhoff sums $S_n\phi(x)$ on subshifts of finite type for Hölder continuous functions $\phi$. In particular, we show that for a given equilibrium state $\mu$ associated to a Hölder continuous potential, there are points $x$ such that $S_n\phi(x) - n \mathbb{E}_\mu \phi \sim a n^\beta$ for any $a>0$ and $0< \beta <1$. Actually the Hausdorff dimension of the set of such points is bounded from below by the dimension of $\mu$ and it is attained by some maximizing equilibrium state $\nu$ such that $\mathbb{E}_\nu \phi = \mathbb{E}_\mu \phi$. On such points the ergodic average $n^{-1}S_n\phi(x)$ converges more rapidly than predicted by the Birkhoff Theorem, the Law of the Iterated Logarithm and the Central Limit Theorem. All these sets, for different choices $(a, \beta)$, are distinct but have the same dimension. This reveals a rich multifractal structure of the symbolic dynamics. As a consequence, we prove that the set of uniform recurrent points, which are close to periodic points, has full dimension. Applications are also given to the study of syndetic numbers, Hardy–Weierstraß functions and lacunary Taylor series.

Type
Research Article
Copyright
© 2003 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)