Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:41:40.377Z Has data issue: false hasContentIssue false

Novel properties of Fibonacci and Lucas polynomials

Published online by Cambridge University Press:  24 October 2008

F. J. Galvez
Affiliation:
Dpto. de Física Teórica, Facultad de Ciencias, Universidad de Granada, Spain
J. S. Dehesa
Affiliation:
Dpto. de Física Nuclear, Facultad de Ciencias, Universidad de Granada, Spain

Abstract

Average or global spectral properties of the Fibonacci and Lucas polynomials recently introduced in the theory of one-dimensional Ising chains are investigated. In addition, several partial sums of these polynomials are shown to have a compact form.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Basin, S.. An application of continuants. Math. Mag. 37 (1964), 8391.CrossRefGoogle Scholar
[2]Case, K. M.. Sum rules for zeros of polynomials. I. J. Math. Phys. 21 (1980), 702708.CrossRefGoogle Scholar
[3]Doman, B. G. S. and Williams, J. K.. Fibonacci and Lucas polynomials. Math. Proc. Cambridge Philos. Soc. 90 (1981), 385387.CrossRefGoogle Scholar
[4]Hansen, E.. Sums of functions satisfying recursion relations. Amer. Math. Monthly 88 (1981), 676679.CrossRefGoogle Scholar
[5]Galvez, F. J. and Dehesa, J. S.. Some open problems of generalized Bessel polynomials. J. Phys. A 17 (1984).Google Scholar
[6]Lucas, E.. Theorie des nombres (Gauthier–Villars, 1891).Google Scholar
[7]Raghavacharyuxu, I. V. V. and Tekumalla, A. R.. Solution of the difference equations of generalized Lucas polynomials. J. Math. Phys. 13 (1972), 321324.CrossRefGoogle Scholar
[8]Riordan, J.. An Introduction to Combinatorial Analysis (Wiley, 1958).Google Scholar
[9]Williams, J. K.. Ground state properties of frustrated Ising chains. J. Phys. C 14 (1981), 40954107.CrossRefGoogle Scholar