Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T13:53:09.517Z Has data issue: false hasContentIssue false

A higher catastrophe machine

Published online by Cambridge University Press:  24 October 2008

A. E. R. Woodcock
Affiliation:
IBM Thomas J. Waston Reseacrch Centre, Yorktown Heights, New York 10598 U.S.A.
Tim Poston
Affiliation:
University of Rochester, Department of Mathematics, Rochester, New York 14627, U.S.A.

Abstract

An elaborated version of Zeeman's Catastrophe Machine (1), which physically illustrates the butterfly catastrophe, is described and analyzed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Poston, T. and Woodcock, A. E. R.Zeeman's Catastrophe Machine. Proc. Camb. Philos. Soc., 74 (1973), 217226.CrossRefGoogle Scholar
(2)Zeeman, E. C. A Catastrophe Machine. In Towards a Theoretical Biology, vol. 4 (Ed. by Waddington, C. H., Edinburgh University Press), (1972), 276282.Google Scholar
(3)Woodcock, A. E. R. and Poston, T. A Geometrical study of the elementary catastrophes. Springer-Verlag Lecture Notes in Mathematics, 373 (Berlin, 1974).Google Scholar
(4)Barit, W. Personal communication.Google Scholar
(5)Dubois, Jean-Guy et Dufouiz, Jean-Paul, . La theorie des catastrophes. II. Dynamiques gradients à une variable d'état. Ann. Inst. H. Poincaré, XX (1974), 135151.Google Scholar
(6)Zeeman, E. C. The classification of elementary catastrophes of codimension ≤, University of Warwick Lecture Notes (written and revised by D. J. A. Trotman).Google Scholar
(7)Dubois, Jean-Guy et Dufour, Jean-Paul, . La théorie des catastrophes. I. La machine à catastrophes. Ann. Inst. H. Poincaré, XX (1974), 113134.Google Scholar
(8)Thom, R.Stabilité structurelle et morphogenese (Benjamin, Reading, 1972).Google Scholar
(9)Thompson, J. M. T. and Hunt, G. W.Toward a unified bifurcation theory. J. App. Math & Phys. (ZAMP), 26 (1975).Google Scholar