Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:26:10.901Z Has data issue: false hasContentIssue false

The Hasse principle for lines on diagonal surfaces

Published online by Cambridge University Press:  30 October 2015

JÖRG JAHNEL
Affiliation:
Department Mathematik, Walter-Flex-Strasse 3, Universität Siegen, D-57072, Siegen, Germany. e-mail: [email protected]
DANIEL LOUGHRAN
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany. e-mail: [email protected]

Abstract

Given a number field k and a positive integer d, in this paper we consider the following question: does there exist a smooth diagonal surface of degree d in $\mathbb{P}$3 over k which contains a line over every completion of k, yet no line over k? We answer the problem using Galois cohomology, and count the number of counter-examples using a result of Erdős.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Birch, B. J.Homogeneous forms of odd degree in a large number of variables. Mathematika 4 (1957), 102105.CrossRefGoogle Scholar
[2]Boissière, S. and Sarti, A.Counting lines on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 3952.Google Scholar
[3]Brandes, J.Forms representing forms and linear spaces on hypersurfaces. Proc. Lond. Math. Soc. 108 (2014), no. 4, 809835.CrossRefGoogle Scholar
[4]Dietmann, R.Linear spaces on rational hypersurfaces of odd degree. Bull. Lond. Math. Soc. 42 (2010), no. 5, 891895.CrossRefGoogle Scholar
[5]Erdős, P.Some asymptotic formulas in number theory. J. Indian Math. Soc. 12 (1948), 7578.Google Scholar
[6]Grothendieck, A.Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962]. Secrétariat mathématique (Paris 1962).Google Scholar
[7]Jahnel, J. and Loughran, D. The Hasse principle for lines on del Pezzo surfaces. Int. Math. Res. Not., to appear, arXiv:1410.5671.Google Scholar
[8]Montgomery, H. and Vaughan, R.Multiplicative number theory. I. Classical theory. North-Holland Cambridge Studies in Advanced Mathematics, 97 (Cambridge University Press, 2007).Google Scholar
[9]Neukirch, J., Schmidt, A. and Wingberg, K.Cohomology of Number Fields (Springer–Verlag, 2000).Google Scholar
[10]Serre, J.-P.Galois Cohomology, corrected ed (Springer, 1997).CrossRefGoogle Scholar